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Abstract

Large training data and expensive model tweaking are
standard features of deep learning for images. As a result,
data owners often utilize cloud resources to develop large-
scale complex models, which raises privacy concerns. Existing
solutions are either too expensive to be practical or do not
sufficiently protect the confidentiality of data and models.
In this paper, we study and compare novel image disguising
mechanisms, DisguisedNets and InstaHide, aiming to achieve
a better trade-off among the level of protection for outsourced
DNN model training, the expenses, and the utility of data.
DisguisedNets are novel combinations of image blocktization,
block-level random permutation, and two block-level secure
transformations: random multidimensional projection (RMT)
and AES pixel-level encryption (AES).InstaHide is an image
mixup and random pixel flipping technique [16]. We have
analyzed and evaluated them under a multi-level threat model.
RMT provides a better security guarantee than InstaHide,
under the Level-1 adversarial knowledge with well-preserved
model quality. In contrast, AES provides a security guarantee
under the Level-2 adversarial knowledge, but it may affect
model quality more. The unique features of image disguising
also help us to protect models from model-targeted attacks. We
have done an extensive experimental evaluation to understand
how these methods work in different settings for different
datasets.

I. INTRODUCTION

Deep Neural Networks (DNN) have shown impressive
performance across diverse domains such as image classifi-
cation, natural language processing, speech recognition, and
recommendation systems. However, DNN training is resource-
intensive and time-consuming, requiring large training data,
careful model architecture selection, and exhaustive model
parameter tweaking. As a result, data owners or model de-
velopers often utilize multiple cloud GPUs or online model
training services, such as Google Colab, to lower their costs.

Despite its popularity, outsourcing DNN learning to the
cloud raises privacy and security concerns about the sensi-
tive training data and trained models [31], [5]. On the one
hand, cloud users cannot verifiably prevent the cloud provider
from getting access to their data. In practice, using public
clouds often means fully trusting your cloud provider. On
the other hand, public cloud providers are not immune to
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security attacks, which may lead to data breaches through
insider [4], [S] and external attacks [25], [37]. Additionally,
membership inference attacks [34], model inversion attacks
[10], and adversarial example exploration [3], [28] can be
applied to models directly to explore the training examples in
DNN learning. Therefore, data and models in training, testing,
and transferring between the cloud and the client are seriously
threatened.

There have been a few efforts trying to address this critical
issue. However, all of them are not satisfactory.

o Encrypted data and models. The first approach is to train
encrypted DNN models over encrypted data. However,
due to the large training data and expensive training pro-
cess in deep learning, cryptographic model training ap-
proaches are too expensive to be practical. A recent study
on training small-scale neural networks [26] (e.g., just
two layers with a maximum of 128 neurons per layer) has
shown astonishingly high communication, computation,
and storage costs. As a result, cryptographic approaches
are often limited to training small models [26], [30] or
securely applying trained DNNs for prediction [40], [29],
[16].

o Federated learning. Another possible solution is to par-
tition the dataset and the learning task into sensitive and
non-sensitive partitions and use cloud-client federated
learning [19]. The non-sensitive portion, assuming it is
much larger than the sensitive one, is exported to and
processed by the cloud. Correspondingly, the learning
process is partitioned and distributed between the cloud
and the client, ensuring that the intermediate information
exchanged between the two parties does not breach
privacy. Collaborative deep learning framework enhanced
with differential privacy [32], [1] may be tweaked into
such a partition-based setting. However, reported attacks
[14] allow an adversarial collaborator (e.g., a compro-
mised cloud in the cloud-client scenario) to generate
images resembling the sensitive classes owned by the
victim parties (the trusted data owner).

o Trusted execution environments. Hardware-assisted
trusted execution environments (TEEs), such as Intel
SGX, can also be applied to deep learning in the cloud.
The idea is to create a secure enclave in the specific
memory area (enclave page cache (EPC)) so that no



other process/thread can access the content in the
enclave. Memory pages are also automatically encrypted
when they are swapped to the disk. However, recent
studies on side-channel attacks [8] make this approach
challenging to develop and deploy. Attackers can peek
or infer the plaintext content inside the secure enclave
via side channels, such as page fault interrupts and cache
loading.

Furthermore, to work with GPUs, costly cryptographic
approaches have been applied to achieve partial data
confidentiality in transferring data between CPU and
GPU [35], [27], which does not meet the performance
requirement for training large DNNs or with large training
data. GPU manufacturers may develop TEEs for GPU !
Howeyver, it’s to be tested to determine how secure it is
in terms of side-channel attacks.

Researchers have also explored the application of differ-
ential privacy (DP) [6] in distributed (federated) learning
scenarios [32] or a trusted central training server [1]. However,
DP works for the setting of sharing data and models without
breaching individual training examples’ privacy. It does not
meet the need for data and model confidentiality.

Scope and contributions. This study compares two dif-
ferent image disguising approaches: InstaHide [16] and our
recently developed DisguisedNets. These image disguising
mechanisms protect the training data and also possibly the
learned models by casting training data into a confidential
transformed space where powerful DNN models can still
learn features and patterns distinguishing image classes and
leverage the power of GPUs in the cloud. The intuition
is twofold. (1) Apply appropriate transformations and data
protection mechanisms so that the disguised images cannot be
effectively reconstructed and re-link to the original images. (2)
Meanwhile, powerful deep learning techniques can still pick
up the unique topological and geometric features preserved
in the transformed space to distinguish the originally defined
classes of images in the transformed space. By doing so, the
tie between the original training data and the learned model
in the transformed space is broken, which also disables any
model-based exploration [3], [28], [34], [10]. In the end, we
can approximately preserve the image distinguishability for the
target classification task while minimizing the recoverability
of individual images.

There are several unique contributions.

1) We have designed two image disguising mechanisms:
AES-based (AES) and random-projection-based (RMT)
for image-based DNN learning to preserve training data
and model confidentiality in outsourced training. The
goal is to study and achieve a good balance between the
utility of disguised images and the level of confidential-
ity protection.

2) We have carefully analyzed the potential attacks under
the outsourced deep learning settings and the resilience
of disguising mechanisms to attacks on data and model
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confidentiality. So that users can choose the correspond-
ing method under their preferred threat model.

3) We have conducted extensive experimental evaluations
on public datasets to show the trade-offs of different dis-
guising schemes and related parameter settings between
data utility and their resilience to attacks. We also show
how the disguising methods work to protect models from
model-targeted attacks and

II. RELATED WORK

Sensitive deep learning assets may include training data,
models, and online testing data. Protection methods may target
the model training phase or the application (i.e., inference)
phase when both phases can be exported to the public cloud.
However, typically, the computational complexity and the
demand on resources of model training is far more than
model application. Thus, many studies have focused on the
application phase, e.g., a cloud-based model inference service
hosting the trained model and making predictions for a user-
provided image [12], [29], [17].

In contrast, due to the high computational complexity of
training algorithms and the large size of training data, there
is no practical cryptographic approach, e.g., homomorphic
encryption or secure multi-party computing based approaches
for protecting model training. A few recent studies in this
direction have shown prohibitively high costs even for a
small neural network model [26], [30]. Trusted execution
environments (TEE) with masked GPU operations are applied
to speed up training [27], [35]. However, no TEE-based deep
learning method has addressed severe side-channel attacks [8].

Researchers have looked at protection methods for image
training data in the outsourcing context. Noise addition [7],
image blurring [24], and morphing [23] are weak as the visible
features of the images are still perceivable and understand-
able. Such transformations do not defeat simple visual re-
identification. Figure 1 shows how easy it is to visually re-
identify the content in the original images by observing the
transformed ones with the mentioned techniques.

A recent method InstaHide [16] applies the idea of mixing
up images [41] in a training set with public images with linear
combination to obfuscate the content, along with randomized
signs of pixel values for further protection. However, it is
vulnerable to image reconstruction attacks [2] that need only
to know the disguised images and public image sets (i.e., the
Level-1 adversarial knowledge, as we will discuss).

Thus, on the one end, existing disguising mechanisms are
too weak to protect almost nothing. On the other end, if
an encryption mechanism, e.g., homomorphic encryption, or
a complex cryptographic protocol, is applied, such linking
or reconstruction would be impossible. However, the current
cryptographic schemes incur extremely high costs in almost
all aspects of computation, communication, and storage. Thus,
they are impractical for resource-intensive tasks like training
a DNN model. Hardware-assisted approaches, such as TEEs,
are still under investigation to ensure the expected security
properties. Along with all these possible approaches, we aim



TABLE I

RELATED WORK ON TRAINING PHASE PROTECTION.

‘Work

Sample Related

Method

Weaknesses

Strengths

Mohassel et
[26]

al. | Train DNN models over masked or
encrypted data with cryptographic
protocols.

Involve high communication, computation, and
storage costs; Require extensive re-design and
custom implementation of the DNN architec-
ture; Involve iterative interactions between the
data owner and cloud provider.

Provide semantic security. Model
quality is fully preserved.

Tramer et

al. [27]

[35] and Ng et

al. | Use TEEs for confidential CPU op-
erations and masked data for con-
fidential GPU operations

side channel attacks are an unaddressed con-
cern

More efficient than cryptographic
protocols, but GPU operations on
masked data are still expensive

Abadi et al. [1]

Apply differential privacy to ran-

Aim to share trained models, and thus does

Preserve individuals’ privacy.

sensitive pixels in images

content of images, vulnerable to visual re-
identification attacks

and Shokri et | domize intermediate gradients not preserve model confidentiality; result in

al. [33] significant drop in model quality; vulnerable
to generative adversarial network attacks.

Fan [7] Train shallow neural network lo- | The intermediate representation of images re- | NA
cally and outsources intermediate | veals the visual characteristics of the related
representation to the cloud for | images, vulnerable to visual re-identification
deeper training. attacks.

Li et al [24] Applies differential privacy to hide | Does not hide the global visual characteristic | NA

Zhang et

[41] and Huang

al. | Mix-up images from the training
set and public domain with random

Vulnerable to ciphertext-only (Level 1 adver-
sarial knowledge) image re-construction at-

Fast training; No changes to the
training architecture.

et al. [16] selection and weighing to hide the | tacks; May expose trained model to wide va-
content of the sensitive image. riety of model-based and membership attacks
for the inside-dataset setting.
- III. THREAT MODELING

. ‘:. ) A“’*#"'_f‘: We are concerned with the confidentiality of the sensitive
k e training image data and the DNN models in the outsourced
original noisy t'raining phase: He're., we make some relevant seC}lrity assump-
tions for our disguising mechanisms. 1) We consider the cloud
(a) provider to be an honest-but-curious adversary, which implies
. that a curious provider will still honestly deliver desired results
g to the data owner. However, it may keep a copy of the data
5 E and programs it can observe. 2) The adversary can observe
the training data, the training process, and the trained models,
original blurred including the structure of the DNN architecture and parameter
settings for training. Thus, they can probe the observed items
with methods such as image reconstruction, re-identification,
and membership attacks. (3) We do not address evasive attacks
and poisoning attacks [3], [28], where adversaries will tamper
with the training data, which can be guarded with training data
577 integrity checking. (5) The client infrastructure and commu-

original morphed nication channels are secure.
Assets to Be Protected. Under a certain protection mecha-
© nism, we generalize that the training data D is transformed
Fig. 1. (a) Differentially private noise addition to images [7]; (b) The (O fkey(D)’ and the model M = M(D) is changed to

reconstructed blurred images in PrivyNet [24]; (¢c) The morphed images [23]

to explore and develop new image-disguising methods to
achieve good balances among costs, data utility, and security
guarantees. Table I summarizes the current work in protecting
data and models in the training phase.

Grey(D). The attacker might want to know whether an image
is likely used to train a model, e.g., the membership inference
attack [34], observe training images that may contain sensitive
objects, or steal a proprietary training dataset. The attack might
also target the model if the model is exposed, e.g., using
model-inversion attacks [9] to explore the private information
of training data.

Adversarial Prior Knowledge. The adversary may have



two levels of prior knowledge. For each level, we may design
a disguising technique.

o Level-1: They may know what the model is used for, e.g.,
the background application, the distribution of the data,
e.g., face images, and the type of disguising technique
used, but do not know the disguising parameter setting
for a specific dataset that serves as the secret key to the
protocol.

e Level-2: In addition to Level-1 knowledge, they may try
to obtain pairs of images and their disguised versions via
other attacking channels (not including the ones they are
targeting). They hope to use these known pairs to explore
various image reconstruction attacks.

Potential Attacks. Recent studies have shown that attackers
can explore training/testing examples and models, for example,
to find adversarial examples misleading the prediction of deep
neural networks [3], [28]. Such attacks depend on adversaries’
clear understanding of the original image data and the ability
to access the developed models freely. Outsourced learning
without protection makes these attacks easier to deploy.

With a protection mechanism on data and models, we
consider a fundamental attack: training image re-identification
that aims at linking the protected images to identifiable original
images. We introduce a model-based re-identification test —
DNN examiner, which uses a model trained on the original
data to tell whether a protected image is re-identifiable. Note
that some related methods [7], [24] are not resilient to human
visual re-identification, which does not protect confidentiality.
Since the image disguising mechanisms break the link between
the original training data and the learned models (in the
transformed space), the existing model-oriented attacks do not
work anymore without successfully breaking the disguising
mechanism. Attackers thus depend on reconstruction attacks:
reverse the disguising mechanism to approximately reconstruct
the original images and then try to re-identify the reconstructed
images. We use the DNN examiner approach to evaluate how
successful a reconstruction attack works in our experiments.

IV. DISGUISEDNETS — A NOVEL IMAGE DISGUISING
MECHANISM FOR OUTSOURCED DEEP LEARNING

In the following, we will introduce an image disguising
framework that incorporates pixel-block partitioning, random
block permutation, and block-wise transformations of images
along with noise additions. The premise is that after the
dramatic transformation, it is difficult to link the disguised
images to the original images, while, unlike pure encryption
schemes, it still preserves some essential patterns for distin-
guishing between classes of images that allow DNN learning
methods to capture. This amalgam of multiple transformations
provides a sufficiently large parameter space so that the attacks
are computationally intractable (Section V) under the Level-1
prior knowledge.

Figure 2 depicts the DisguisedNets framework. A data
owner disguises her private images before outsourcing them
to the cloud for DNN learning. She can either fully outsource
the entire image datasets and the learning procedure to the

cloud or selectively retain sensitive images in the cloud-client
partitioning setting. She transforms all of her images using
one secure transformation key secret to her. Note that this
transformation should be at a reasonable cost, practical for a
client’s infrastructure to process.

GPU Processing

Disguised Images
{Tk(X).yi}

 —_

Data Owner Cloud Provider

Fig. 2. Image disguising framework for DNN learning.

Specifically, assume the data owner owns a set of images
for training, notated as pairs D = {(X;,y;)}, where X; is
the image pixel matrix (I X m and 3 x | x m for grayscale
and RGB images respectively) and y; the corresponding label.
We formally define a disguising mechanism as follows. Let
the disguising mechanism be a transformation T, where K
is the secret key that depends on the selected perturbation
techniques. By applying image disguising, the training data
is transformed to {(T(X;),¢;)} with ¢; mapped to 0,1,...
randomly representing the classes ;. The original model is a
function M (D), which is learned with a DNN learning method
®: (D) — M(D). The image disguising mechanism enables
the same learning method & to be applied to the transformed
data directly without any modification: &(Drp) — My (Dr).
For any new data X,.,,, the model application (or inference)
is defined as My (T(Xpew)), i-€., the new data transformed
with the same key. To make such a transformation method
practical for modeling, i.e., a model trained with transformed
data still working satisfactorily, a user may expect the error
of modeling is not far away from the original model’s. Thus,
a utility-preserving mechanism should have

|Err(Mr) — Err(M)] < §

where 0 is the level of model quality degradation acceptable
to the user. While for a specific DNN modeling method and a
specific dataset, it’s difficult to theoretically justify what this
gap will be, one can always directly evaluate the model quality
to check whether it is acceptable for the application. We have
empirically evaluated the § levels for different mechanisms,
datasets, and a few popular DNN modeling architectures in
experiments.

A. Pixel-Block Partitioning and Block-based Random Permu-
tation

In this section, we present one way of image transformation:
image block permutation, that will be combined with other
mechanisms later.

An image X, is first partitioned into ¢ blocks of uniform
size v x s. If we label the blocks sequentially as v =<
1,2,3,4,...,t >, a pseudorandom permutation of the image,
T, (X), shuffles the blocks and reassemble the corresponding



image accordingly. Block-based permutation preserves the in-
block information and the relative positions of related blocks.
Thus, we understand it preserves a great amount of information
for effective modeling. However, while the permutation may
break the global patterns of the images and achieve good
visual privacy already, the between-block characteristics such
as boundaries, color, content shape, and texture of the origi-
nal neighboring blocks may provide clues for adversaries to
recover the original image — imagine the jigsaw puzzle! For
large t, such attacks can be time-consuming due to the vague
similarity between block boundaries. However, with the prior
knowledge: a pair of original image and its block-permuted
image, it’s not difficult to solve such a jigsaw puzzle. Thus,
we use this as an auxiliary step enhancing other steps in the
disguising framework.

B. Pixel-Block Transformations

Next, we establish pixel-block-level protection mechanisms
that aim to preserve the data utility for DNN modeling
and further increase the resilience to attacks. We consider
two candidate mechanisms: random projection and encryption
schemes, and discuss their characteristics. Specifically, when
an image is partitioned into ¢ pixel blocks for random permu-
tation, we get a list of ¢ parameters {K;,i =1...t}, one for
the pixel-block at the same position across the whole dataset.
We name the specific position of the pixel block in the image
the pixel-block position. The list of parameters acts as a secret
key and will be shared, together with the permutation key,
by each image in the dataset. The purpose of this setting is to
maximize the preservation of distinguishable patterns between
image classes — i.e., a pair of similar image patterns (blocks)
can still be transformed to another pair of (likely) similar ones
after applying the disguising mechanism.

Randomized Multidimensional Transformation (RMT).
For an image represented as a pixel matrix X, a general linear
transformation can be defined as G(X) = R(X + A), where
R, «m 1s a random orthogonal matrix generated following the
Haar distribution [11], or a random invertible matrix, e.g., a
random projection matrix [39], and A is an optional noise
matrix. We call this method the randomized multidimensional
transformation. When an image is partitioned into ¢ blocks
for random permutation, we prepare a list of random matrices
{R;,i = 1..t}, one for each image-block position and share
this list for each image. Such transformation is known to
preserve (or approximately preserve by random projection) the
Euclidean distance between columns of the matrix X . For real
application, we may arrange the pixel blocks accordingly to
form the column of X. For example, a 4x4 pixel matrix can
be partitioned into 4 2x2 block to preserve the smaller block-
level similarity with RMT. Figure 3 shows the effects of RMT
on MNIST and CIFAR-10 datasets.

AES Block Transformation (AES). The existing AES
encryption schemes typically use 128-bit encryption keys,
which encode every 16-byte data block sequentially. If we use
AES for pixel-block encryption, assuming each pixel is stored
in one byte, 16 original pixels are mapped to 16 encrypted

Algorithm 1 DN_RMT (X, t, Key)
Require: X: image of size [ x m; t: number of blocks; Key
= {permutation_key, transformation_matrices, noise_level
€ [0, N]}
I: 1, s < compute image block size with [ x m and ¢;
2: Partition image X, into blocks X7, X, ..., Xy;
3: Shuffle the image blocks pseudorandomly with permuta-
tion_key
4: for each block 7,7 =1...t do
A; < Generate random matrix with elements from
the uniform distribution in [O,N];
use the transformation matrix at the position ¢: R;;
Y, + Ri(X; + A,);
end for
Re-assemble {Y;} to make the transformed image Y and
return Y,
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Fig. 3. Block-wise RMT+Noise on MNIST and CIFAR-10 images.

bytes (pixels), and a whole pixel block is encoded to 16-byte
units. Putting all encrypted pixel blocks together, we get a
disguised image. For clear presentation, when we talk about
AES encryption block, i.e., 16 bytes for a 128-bit encryption
key, we use the 16-byte “encryption unit”, which are different
from “pixel blocks” we have been using previously in our
image disguising framework. Figure 4 shows some example
AES transformations on images.
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Fig. 4. Pixel-block based AES encryption of MNIST and CIFAR-10 images.

We consider two AES modes in our design. (1) We observe
that with the AES Cipher Block Chaining (CBC) mode, any
pixel-level change in the pixel block between two images
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Fig. 5. AES-ECB encryption of MNIST image with different strategy.

will result in different encoding results for most 16-byte AES
blocks in this pixel block position, making it not ideal for
our purpose. (2) Then, we turn to the AES Electronic Code
Book (ECB) mode that can be considered as a fixed mapping
function between 16-byte original data to 16-byte encrypted
data. Different from CBC, the neighboring 16-byte blocks do
not affect the encoding of the current block. This matches our
requirement of data utility preservation, e.g., to preserve the
block-level distinguishable patterns after the transformation.

To preserve more information, based on the intuition of
smaller blocks preserving more inter-pixel-block information,
we can also use unit sizes smaller than the regular size, which
is 16 pixels for 128-bit ECB. The method is to scale up the
image first, e.g., from 32x32 to 256x256 (where each pixel is
duplicated eight times), then encrypt it by 16-pixel units, and
finally scale down to the size 32x32. Please refer to Figure
5 for the detailed example. It’s equivalent to encrypt 2-pixel
units in the original 32x32 images. We found by reducing the
block size, the model quality can be improved with the cost of
lower attack resilience to the Level-2-knowledge-based attack.

Algorithm 2 DN_AES (X, k, t, Key)
Require: X: image of size | X m; k: scale-up factor; t:
number of blocks; Key = {permutation_key, AES_keys,
p = probability of salt-pepper noise }
Ensure: the selection of k and t results in image blocks that
can be further partitioned to 4x4 pixel patches;
I: Xikxmk < scaled up the image;
2: 1, s ¢~ compute image block size with [k X mk and ¢;
3: Partition image X, into blocks X7, X, ..., X};
4: Shuffle the image blocks pseudorandomly with permuta-
tion_key;

: for each block 7,7 =1...¢ do

6: Y; + for each pixel in block X;, with the probability
p, it’s randomly turned to white or block pixel (salt-pepper
noise);

7: E(Y;) + with the AES CBC mode, every 16-byte
segment (4x4 pixel patch) is encypted to 16 bytes of AES
digest with AES_key_i;

8: end for

9: re-assemble image blocks F(Y;) and return E(Y)

W

C. Complexity Analysis

The additional costs of the disguising methods consist of the
encoding cost and the possible additional learning cost, i.e., it
may take more rounds to converge. We leave the second part
to the experimental evaluation and analyze the encoding cost
here.

For an image partitioned into ¢ blocks with each block
[ x m, the RMT transformation involves ¢ matrix-matrix
multiplications and matrix additions. As the numbers ¢, m, and
[ are all small, the cost of RMT per image is low: O(tim?).
For an image of [ x m with a scale-up constant of s, the AES-
128 encryption cost is [ x m x s/16 times of AES encryption.
Our experimental evaluation shows that per image cost is less
than 10 ms and can be comfortably done by any PC or mobile
phone.

D. Model Protection via Image Disguising

Note that the models trained with disguised data work
only on disguised data. We show this property also protects
models from existing model-targeted attacks. So far, we have
seen model-inversion attacks [9], [42], membership-inference
attacks [34], [15], and model-extraction attacks [36], [18].

Model-extraction attacks assume the attacker can freely
access the model, e.g., via a cloud-based prediction API. With
such a service, the attacker can try various images to collect
their outputs and then use the input-output pairs to reconstruct
the model. Our threat model assumes the attacker can copy or
save the trained model for analysis. Thus, the attacker does not
need to perform model-extraction attacks. As the models only
work on disguised test images, without the secret disguising
key, they are useless to the attacker.

Membership-inference attack aims to estimate the possi-
bility of a target example belonging to the training data of
a model. To perform such an attack, the attacker must first
apply the disguising method (with the secret key) to the
target example so that the model can be used. This step
effectively blocks the attack or at least significantly increases
the difficulty. To successfully conduct the MIA attack on the
disguised model, the attacker may need to manipulate an
authorized user to transform the example and intercept the
transformed one, which corresponds to the mentioned Level-
2 knowledge. Thus, the disguising mechanism establishes an
effective defensive line.

Model-inversion attack uses a learning procedure, e.g., a
GAN method [42], to progressively adjust randomly generated
or seed images from similar domains towards most likely
training examples. When applied to the models trained on
disguised data, the model-inversion attack recovers only the
disguised training data, not the original data. Again, the
disguising mechanism builds a defensive line on this attack.
We will show how the RMT mechanism works against model-
inversion attacks in experiments.

V. ATTACK ANALYSIS

This section aims to analyze the possible threats to the
proposed disguising mechanisms and clarify the applica-



ble settings. With Level-1 adversarial knowledge, Disguised-
Nets mechanisms provide strong confidentiality protection, as
shown in the discussion of “brute-force attacks”. In contrast,
other related methods are still struggling with visual re-
identification by human eyes [24], [7] or disguised-image-
based reconstruction attacks [2]. We also analyze more so-
phisticated reconstruction attacks that depend on Level-2 ad-
versarial knowledge.

A. Level-1 Adversarial Knowledge and Attacks

Recall that Level-1 knowledge includes knowing the dis-
guised images and possibly the model domain, i.e., the types
of images and the background application. It is clear that
with only Level-1 knowledge, the brute-force attack on AES
schemes is not possible, and thus we focus on the scheme
using multidimensional projection.

Visual Re-identification. The first simple attack is to visu-
ally identify images by human attackers. We have shown that
simple methods like noise addition, morphing, and shallow-
network-based transformation are not resilient to this attack.
However, many other attacks may use re-identification as the
last step, i.e., reconstruction attacks. It’s inefficient for human
evaluators to check each image to determine the protection
level of an image disguising mechanism. Thus, we propose
the DNN examiner approach for evaluation purposes: let a
DNN trained on the original datasets to perform the visual
re-identification task for human evaluators. We will use DNN
examiners in experiments.

Brute-Force. The brute-force attack method for image re-
construction is to enumerate each possible parameter setting of
the disguising mechanism and then check the recovered result
with re-identification. As AES encryption is already resilient
to the brute-force attack, we examine the RMT method only.
Let’s start with a block-level transformation for any image
block ¢ with RMT. With X/ = X;R,;, the adversary knows
only X!. In the brute force attack, the number of possible X
is determined by the number of possible I?; matrices. We show
that the number of possible R; (even limited to orthogonal
ones) can be exponentially large for given parameters.

Proposition 1. For values encoded in h-bit finite field, there
are O(2"™) candidate orthogonal matrices R, x .

The proof is based on the theory of orthogonal matrix
group [13], the detail of which is skipped here. With a typical
setting in our experiments, e.g., h = 8 and m = 28 for the
MNIST dataset, the overall complexity is O(2224), which is
more than sufficient to protect from computationally-bounded
attackers. Combined with the random permutation of blocks,
the attack complexity is even higher. Thus, a brute-force attack
is generally impractical for the proposed methods.

Clustering Attack. Carlini et al. [2] utilized a clustering
method to attack InstaHide [16] disguised images. InstaHide
uses the random mix-up method to generate disguised images.
Depending on the random weight distribution, some disguised
images might be dominated by the same image, which likely
forms a cluster of images that can be used to de-mask and

de-noise. As InstaHide disguised images are essentially linear
combinations of plaintext images, the attack result can be
visually re-identified.

Important questions are whether our disguising methods
can generate images with clustering structures and whether
such clusters can be used to break our disguising methods.
To answer these questions, we visualize the disguised training
data with t-SNE [38] to understand the existence of clustering
structure in the Euclidean-distance space. Figure 6 shows
that RMT might preserve the clustering structures for some
datasets: for simpler datasets like MNIST and FASHION, the
clustering structure is well preserved, while others do not.
In contrast, AES does not preserve any clustering structure,
as shown in Figure 7. While AES not preserving clustering
structures to leave less information to attackers, it also affects
data utility and leads to lower-quality models, as we will show
in experiments.

(a) RMT on MNNST

(b) RMT on CIFARI10

Fig. 6. t-SNE visualization of RMT disguised datasets (4x4 blocks). Colors
represent different labels. A dense area covered with one color means that the
clustering structure matches the label distribution well for the specific subset.

Next, can such preserved clustering structures be used for
attacks? An attack on InstaHide [2] has used image clusters to
de-noise and de-mask, as InstaHide uses the random weights
mix-up mechanism. However, unlike InstaHide, clustering
structures of RMT-disguised images do not help attackers
identify original images. However, it may help attackers infer
additional information with other domain knowledge. For
example, if the original training samples’ distribution (and
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(a) AES on MNIST

(b) AES on CIFARIO

Fig. 7. t-SNE visualization of AES disguised datasets (4x4 blocks)

thus the clustering structure) is also known, it may allow the
attacker to identify the mapping between a specific cluster of
original images and a cluster of disguised images. As distances
between samples are not preserved, it’s still difficult to figure
out the sample-to-sample mapping.

B. Level-2 Adversarial Knowledge and Attacks

We move one more step further to study the more challeng-
ing issue: what if a powerful adversary can obtain additional
knowledge: pairs of original images and their transformed
ones? This assumption corresponds to the chosen-plaintext
attack in cryptographic analysis [20]. This study helps us
understand when we should not use a proposed disguising
method. Below, we focus on the codebook attack on the AES-
ECB-based disguising mechanism and the regression-based
attack on the RMT mechanism.

Codebook Attack. The assumption is that the adversary is
knowledgeable of the encryption procedure described previ-
ously but does not have the encryption/decryption key. Since
the AES ECB method is deterministic, the basic attack is to
build a mapping (i.e., the codebook) between the plaintext unit
(e.g., the 16-byte pixel block) and its encrypted counterpart
(e.g., the 16-byte AES cipher block). By processing the
known image pairs, the adversary constructs a codebook as
a dictionary mapping 16-byte pixel blocks to encrypted 16-
byte blocks. Since different images, especially those in the

same class, might share some 16-byte pixel blocks, some 16-
byte encrypted blocks in the targeted images are likely already
in the codebook, which will be used to recover the original
blocks. For encrypted pixel blocks not present in the codebook,
the adversary may use a fixed pattern, e.g., all zero values or
most likely values to pad. By repeating this procedure for
each 16-byte block, the adversary can recover some parts of
the image, which can be further re-identified via human eyes
or models at the adversary’s hands.

Possible mitigation methods. Let the hit rate be defined
as the probability that an encrypted pixel block can find a
match in the codebook. This attack can become less effective
if we add salt-and-pepper noises to the original images before
encoding. This step will reduce the hit rate significantly and
make the mapping non-unique: the same 16-byte pixel block
can be mapped to different ciphertexts. We will evaluate the
success rate of this attack in experiments, using the accuracy
that the DNN examiner trained with the original image space
correctly classifies the reconstructed images.

Projection Matrix Estimation Attack. Note that noise
addition can easily defend the RMT method from the code-
book attack, which is already a part of the RMT method.
However, if the adversary has obtained enough original and
transformed image pairs, there is a possibility that the trans-
formation matrix might be estimated with linear regression.
Specifically, a noise-added block-wise transformation, e.g.,
Y, = R;(X; + A;), where A; is a random noise matrix, re-
generated for each image block X;, and drawn uniformly at
random from [0, N] where N is the tunable noise level. With
enough known pairs of (X;,Y;), the regression method can be
applied to estimate R;. Generally, the more known pairs, the
more precise the estimation can be. However, it’s unclear how
the noise level affects the effectiveness of estimation and how
we can achieve a good balance between data utility and attack
resilience. We will examine the regression-based attacks in the
experiments.

Note that the recently proposed InstaHide [16] method also
somewhat matches this definition of image disguising. It also
requires learning from the disguised examples {(7'(X;),c;)}.
However, the learned model My is still applicable to the
original test data, i.e., the application phase uses M7 (X, eu)-
They also show that the performance of My (X,eq) is very
close to M(X,ews), Which implies My ~ M. leads to
serious problems, such as the impossibility result and a
clustering-based attack, as Carlini et al. [2] show. In contrast,
our proposed methods require strictly Mp(7'(X ) in the
application phase, which eliminates the possible information
leakage targeting the models and the clustering of disguised
training images.

VI. EXPERIMENTS

The experiments have three goals. (1) The proposed Dis-
guisedNets mechanisms involve parameter settings, which may
affect data utility. (2) While the proposed methods are resilient
to attacks under Level-1 knowledge, we need to understand
the intrinsic trade-offs between data utility and the methods
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Fig. 8. Convergence speed on disguised images. Baseline: models trained on
original datasets.

enhancing the resilience to Level-2 attacks. (3) As we have
discussed, the proposed methods have unique benefits in
defending model-based attacks, which we will demonstrate in
experiments.

Datasets. We use four prevalent DNN benchmarking
datasets: MNIST, FASHION, CIFAR10, and LFW [22] for ex-
periments. MNIST (handwritten digits) and FASHION (fash-
ion items) are gray-scale 28 x 28-pixel images with ten classes.
CIFAR10 has 60 thousand 32 x 32 color images distributed
into ten classes. LFW is a labeled face database. It is relatively
small, with only a few thousand samples. We used five folds
of random sampling to estimate the standard deviation of
modeling results, which are also used for later experiments.

Table II summarizes the datasets, the techniques used to
train the base models, and their baseline model accuracy on
the original image data. All the models are implemented with
PyTorch.

TABLE II
DATASETS AND BASELINE ACCURACY. TR: TRAINING, TE: TESTING

Datasets Records ImageSize Network BaselineAccuracy
MNIST (60K Tr,10K Te) {28 x 28} AlexNet 96.7 £ 0.2%
FASHION (60K Tr,10K Te) {28 x 28} AlexNet 88.7 £ 0.3%
CIFAR-10 (50K Tr,10K Te) {32 x 32} | ResNet-18 93.4+0.2%
LFW (1164 Tr, 292 Te) | {60 x 48} | ResNet-18 94.3 + 2.0%

A. Parameter Settings for Level-1 Attacks

Since all the proposed methods are resilient to Level-1
attacks, we focus on the utility preservation aspect in this
section.

Costs. The disguised images are used directly with the
existing DNN training algorithms without any modification to
the algorithm or data. We have briefly analyzed the per image
disguising cost in Section IV-C, which can be comfortably
handled by a mobile phone. Another question is whether the
disguised images will extend the training time. Fig 8 shows the
evaluation of convergence speed on MNIST and CIFAR10 for
the three methods: the baseline, RMT, and AES. The baseline
refers to the models reported in Table II. Both RMT and AES
run with the basic setting of 4x4 blocks. All of the methods
converge with 50 epochs, but AES appears more unstable on
CIFAR10.

RMT Mechanism. We look at the effects of block size and
noise levels on models trained on images transformed with

RMT methods. For easier presentation, we convert block size
into the number of blocks: 1 block on the x-axis means the
image is not split into blocks; while 196 blocks means 196
2x2 blocks for 32x32 images (CIFAR10) or padded 28x28
images (MNIST and FASHION), and 196 4x3 blocks for
padded 60x48 images (LFW). Thus, a smaller block size
results in a larger number of blocks after partitioning, as the
image size is fixed. If more than one block is generated in
partitioning, we also apply a secret block-wise permutation.
Figure 9 (a) shows that the model quality is slightly decreased
with smaller block sizes (more blocks per image). Overall,
the model quality is well preserved, only 2-3% worse than
the baseline. It’s also understandable that the simpler images,
MNIST and FASHION, are more resilient to noise addition
and more sophisticated ones are sensitive to noise as shown
in Figure 9 (b).
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Fig. 9. Effects of block size and varying noise levels on model quality for
RMT-disguised images.

AES Mechanism. We have done experiments to understand
the effect of block-size setting for the AES ECB based
block protection. We use “pixel blocks” for partitioning and
permutation, and “units” for AES encryption units. A pixel
block typically contains more than one unit. Recall that AES
uses 16 bytes as the encryption unit if 128-bit encryption is
used. Our partitioning schemes follow this restriction of unit
size to make sure that each block has integer times of 16
bytes. Figure 10 shows different block size settings from 1
block (e.g., 32x32 per block for 32x32 images) to 64 blocks
(e.g., 4x4 pixels per block for 32x32 images).

We tested two schemes: no scaling vs scaling. The no-
scaling scheme uses the block size > 16 bytes, while scaling
can use even smaller block sizes. Specifically, when we use
a block size j 16, e.g., 2x2 blocks, the scaling up factors
are determined for the x and y axes, corresponding, e.g., the
scaling factor for x-axis is 2 and also 2 for y-axis for 2x2
blocks, so that we can partition the scaled image with 4x4
blocks. Figure 10 (a) shows that the model quality can be
affected by the no-scaling scheme. For some datasets, e.g.,
CIFAR10 and LFW, the model quality is too low to be used.
Figure 10 (b) shows that the model quality is boosted to
the level comparable to the RMT’s results for MNIST and
FASHION, while the other two still stay at unusable levels.
The possible reason is that the colored (multi-channel) images
contain more noisy image blocks, which changes significantly
after the AES transformation. In summary, different from the
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Fig. 10. Effect of block size on model quality for AES-ECB-disguised images

B. Resilience on Level-2 Attacks: AES Scheme

With the known additional knowledge, i.e., pairs of original
and disguised images, the disguising mechanisms might be
under the reconstruction attack, and attackers can visually
check the reconstructed images to re-identify the features of
original images.

To effectively evaluate the re-identification step, we use
a DNN trained on the original image data to simulate the
attacker in the visual re-identification process. The intuition is
that if any features in the disguised (or reconstructed) images
can be detected visually by the adversary, it can be used to link
the disguised (or reconstructed) images to the original images.
Such linking is often probabilistic, and we can use the linking
success rate (i.e., the accuracy of prediction) to gauge the
threat level of attacks. As DNNs perform comparably well as
human experts do in the image-based classification tasks [21],
we believe such “DNN examiners” can satisfactorily simulate
the attacker.

We train DNN examiners with the original training data
using the same DNN architectures detailed in Table II. We then
apply the DNN examiners to see whether the reconstructed
images can be correctly classified to their original labels.
To minimize the impact of DNN architecture and different
baseline accuracy, we define the attack success rate as

accuracy of DNN examiner on disguised/reconstructed images

x 100.

accuracy of DNN examiner on original images

1) Resilience to Codebook Attack for the AES ECB method:
Assume the attacker knows m pairs of original images and
their ECB encrypted ones, and also other information such as
their pixel-block sizes. The codebook attack uses the known
pairs to construct a mapping between the known plaintext
16-byte pixels (or a reduced number of pixels if the scaling
up/down method is used to preserve more utility) and the
corresponding encrypted 16-byte pixels. The attacker might be
able to use the codebook to partially recover the original pixel
blocks of a disguised image (with random pixel patches for
unrecognized blocks). We use the DNN examiner to examine
the quality of reconstructed images.

As MNIST and Fashion perform reasonably well with the
AES scheme (Figure 10 compared to the other two, we pick

only the MNIST data for clear presentation — the Fashion data
has a similar pattern. Figure 11 compares the attack results on
16-pixel encryption units (subfigure (a)) and 2-pixel encryption
units with scaling (subfigure (b)). The attacker’s known pairs
are selected randomly from the training data, while the targeted
images are selected from the testing data. 16-pixel encryption
unit gives a one-to-one mapping between the original pixel
units and the encrypted ones. We observed hit rates are quite
low (lower than 10%), but success rates are increasing steadily
due to the increased codebook size. Overall, attackers will
need a large number of pairs to achieve a good success rate.
2-pixel encryption unit may create a one-to-many mapping
between original pixel units and the encrypted ones, due to the
scale up/down processes. We used the Python library function
for image scaling. With the scaling process, we observed that
hit rates initially increase to around 10% and then drop to 2-
3%. However, the success rate quickly reaches the plateau —
around 50% with only 20 image pairs. Therefore, no-scaling
method is more resilient to attacks — both the hit rates and
success rates grow slowly and knowing the whole training data
does not help improve the success rates much. In contrast, the
scaling method can help gain better model quality. However, it
might be vulnerable to Level-2 attacks. There seems an abrupt
trade-off the user may have to make.

Aiming at achieving a better balance of utility and attack
resilience for the setting of the 2-pixel encryption unit, we
found that it’s possible to defend from the codebook attack by
adding “salt-and-pepper” noises to the original images. The
AES encrypted pixel block changes dramatically when any
of the original pixel changes, which helps reduce the attack
success rate. Figure 12 shows by adding a small amount of
noise, e.g., 2-3%, the attack success rate drops by 10%, while
the model quality is not significant damaged. Certainly, the
level of noise should be carefully chosen to avoid destroying
the data utility: an increase of noise intensity to 4% will
dramatically degrade the model quality as Figure 12 (b) shows.
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Fig. 11. Codebook attack on MNIST dataset with varying number of known
pairs.

C. Resilience on Level-2 Attacks: RMT Scheme

We study how known pairs can be effectively used to
attack the RMT method. Again, we assume a stronger attack
scenario: the attacker already knows the pixel-block size
and the permutation pattern. By known only one pair of
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Fig. 13. Attacks on RMT-disguised images.

images, RMT without noise addition can be easily broken
— the block-wise transformation parameters {R;,i = 1l..m}
can be straightforwardly recovered. Different from the “salt-
and-pepper” noise for selected pixels in the enhanced AES
scheme, we generate a noise value for each pixel and add
it to the original pixel value before applying the projection,
ie., Y; = (X; + A;)R;, where the noise A; is drawn from
the uniform distribution U(0,u). With noise addition, the
known attack method is to use linear regression to estimate
the parameters {R;}, the accuracy of which is affected by the
noise intensity (i.e., the variance of noise) and the number of
available pairs.

Figure 13 (a) shows that direct re-identification (with Level-
1 attack) is generally not effective at all. However, Figure 13
(b) shows that the regression attack is surprisingly effective
on all datasets. With a small number of known image pairs,
the attack can achieve surprisingly high success rates. Thus,
it’s not safe to use the RMT scheme when Level-2 attack
knowledge is possibly available.

D. Use Image Disguising to Protect Models

Exposing models may have high risks, as shown in
model-inversion attacks, membership-inference attacks, and
model-extraction attacks. This experiment shows that image-
disguising methods can work effectively against such model-
targeted attacks. We take model-inversion (MI) attacks, for
example, which try to recover training data from the exposed
model.
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Fig. 14. RMT protects models from model-inversion attacks. Original: the MI
attack applied to the original non-protected model to recover images. RMT:
the MI attack applied to the model trained on RMT-disguised training data.

TABLE III
BEST RESULT UNDER LEVEL-1 ASSUMPTION

Datasets No Disguise | RMT Disguise | AES Disguise

MNIST 96.7 £0.2% | 96.6 + 0.4 % 91.6 £ 1.1%

FASHION | 88.7 £0.3% | 85.1 £ 0.6 % 68.9+1.4%

CIFAR-10 | 934 £0.2% | 89.3%=+0.1% 113+ 1.7 %
LFW 94.3 £2.0 92.6+2.3% 17.240.4%

The experiment exposes the models trained on RMT dis-
guised images for a recent model-inversion (MI) attack [42]
that has shown good performance in recovering training data.
Specifically, we used a 4x4 block without noise addition for
RMT to generate disguised data and models. We then apply
the MI attack to generate 2000 images for each dataset (200
for each class). To compare the performance of the MI attack,
we use the DNN examiners trained on the original datasets to
recognize the recovered images. Figure 14 shows that models
trained on RMT-disguised data are very resilient to the MI
attack. Indeed, the MI attack recovers the RMT-disguised
training data, which are different from the original images
and thus still unrecognizable. The results are consistently
worse than the DNN examiners applied to the RMT-disguised
training data directly (Figure 13 a).

E. Discussion

Based on the experimental results, we have the following
observations.

o With Level-1 adversarial knowledge, the RMT mecha-
nism preserves good data utility for most datasets. In
contrast, the AES scheme only keeps data utility for some
datasets. Table III summarizes the best result under the
Level-1 adversarial knowledge assumption.

o With Level-2 adversaries, the RMT mechanism should
not be used as the attack success rate will be high. The
AES scheme with a small encryption unit and small
(e.g., 2%) noise addition is resilient to the codebook
attack and still preserves model quality for some datasets.
Table IV summarizes the best results for AES. As the
AES scheme does not work on CIFAR10 and LFW, so
far, we haven’t discovered satisfactory utility-preserving
disguising methods against Level-2 adversaries.



TABLE IV
AES BEST RESULT UNDER LEVEL-2 ASSUMPTION: ENCRYPTION UNIT
2X1 (WITH SCALING), NOISE LEVEL 2%.

Datasets No Disguise | Model Accuracy | Attack Success Rate
MNIST 96.7 £0.2% 90.14 +£1.1% 30.76£0.87%
FASHION | 88.7 +0.3% 73.08+ 0.86% 23.51+ 0.27%

o Finally, if only Level-1 adversaries are expected, RMT
can also be used to effectively protect from model-
targeted attacks, as the models trained on RMT disguised
data can only be applied to disguised data.

VII. CONCLUSION

Outsourcing large image datasets to the cloud for deep
learning has been an economical and popular option, but it
also raises concerns about data and model confidentiality. The
existing solutions are either too expensive to be practical,
vulnerable to different model-based adversarial attacks, or
ineffective in protecting the image content. By focusing on
the training image reconstruction and re-identification attacks,
we propose image disguising mechanisms that efficiently
thwart the attacks and preserve model quality. The combi-
nation of random image-block permutation and block-wise
AES encryption or multidimensional transformation (RMT)
does not require any changes to the existing DNN modeling
architectures. Experimental results show that the RMT method
can preserve the model quality and provide sufficient attack
resilience under Level-1 adversarial knowledge — adversaries
knowing only the disguised images and the domain informa-
tion. The AES method improves the attack resilience against
Level-2 adversaries who manage to obtain pairs of original
images and disguised ones. However, the AEs method may
seriously damage some datasets’ utility. We also show that
the disguising methods can protect the trained models from
model-targeted attacks. The future work will be focused on
new image disguising mechanisms that can more efficiently
preserve utility with stronger security guarantees. We will also
extend the related research to non-image data.
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