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Abstract—Differential privacy quantifies privacy through the
privacy budget ϵ, yet its practical interpretation is complicated
by variations across models and datasets. Recent research
on differentially private machine learning and membership
inference has highlighted that with the same theoretical ϵ
setting, the likelihood-ratio-based membership inference (LiRA)
attacking success rate (ASR) may vary according to specific
datasets and models, which might be a better indicator for
evaluating real-world privacy risks. Inspired by this practical
privacy measure, we study the approaches that can lower
the attacking success rate to allow for more flexible privacy
budget settings in model training. We find that by selectively
suppressing privacy-sensitive features, we can achieve lower ASR
values without compromising application-specific data utility.
We use the SHAP and LIME model explainer to evaluate feature
sensitivities and develop feature-masking strategies. Our findings
demonstrate that the LiRA ASRM on model M can properly
indicate the inherent privacy risk of a dataset for modeling,
and it’s possible to modify datasets to enable the use of larger
theoretical ϵ settings to achieve equivalent practical privacy
protection. We have conducted extensive experiments to show
the inherent link between ASR and the dataset’s privacy risk.
By carefully selecting features to mask, we can preserve more
data utility with equivalent practical privacy protection and
relaxed ϵ settings. The implementation details are shared online
at the provided GitHub URL https://anonymous.4open.science/r/
On-sensitive-features-and-empirical-epsilon-lower-bounds-BF67/.

Index Terms—Differential privacy, Feature sensitivity, Mem-
bership inference attack

I. INTRODUCTION

With the fast advancement of deep learning techniques,
companies can now leverage a huge amount of user-generated
or user-related image and text data to train powerful large
models. A main concern is these large models learn much
more than what they are supposed to learn [1] – once the
models are published, adversaries can use them to infer private
information in the training data, e.g., via model inversion [2],
[3], membership inference [4], [5], property inference [6],
[7], and domain inference [8], [9] attacks. To address the
private-information leak from published models, recent devel-
opments in privacy-preserving deep learning have incorporated
the theory of differential privacy [10], e.g., the well-known

This work is partially supported by the National Science Foundation (Aware
# 2232824).

Differentially Private Stochastic Gradient Descent (DP-SGD)
[11].

A unique feature of differentially private machine learning is
that the setting of privacy budget ϵ in (ϵ, δ)-differential privacy
[12] is independent of applications and data distributions. The
smaller the ϵ setting, the better the privacy is preserved. It’s
considered an advantage since the learned privacy-preserving
model will be resilient to attacks equipped with any type
of adversarial knowledge. On the other side, it’s also well
believed that the differential privacy setting is too conservative
to preserve data utility [13], [14]. For instance, the commonly
accepted setting ϵ = 1 has led to significant utility loss for
many applications. In real-world applications, much higher ϵ
values are often used to achieve better data utility, which has
raised concerns among researchers [15], [16] since no clear
guidance is available to justify this practice. An intriguing
question is whether and how we can relax the ϵ setting for
different types of data and applications1.

Is there a more practical auxiliary measure that can guide
us to set the privacy parameters? This measure is likely
dataset- and model-specific to complement the application-
agnostic nature of differential privacy. The recent development
on membership inference attacks (MIA) reminds us that it’s
possible. However, nobody has tried to apply MIA to this
challenging problem.

Carlini et al. [17] show that the likelihood- ratio-based
membership inference attack (LiRA) can utilize the definition
of differential privacy directly to conduct a sample-level mem-
bership inference attack. When applied to machine learning
models, the essential idea of differential privacy is interpreted
as follows: it’s difficult (at the expϵ level) to distinguish
whether a model used a sample in training or not. LiRA
conducts a hypothesis-testing approach to derive the likelihood
of a sample’s membership. Based on LiRA, one can also derive
the attacking success rate (ASR) for each sample [18]. Due to
the intrinsic link between LiRA and differential privacy [19],
it’s possible to use LiRA-based ASR as a measure to guide the
selection of ϵ. We define a dataset-level ASRM to indicate the
worst-case identifiability of all samples in terms of a model M .

1Intuition says yes to the first question: When it comes to tasks that do not
contain personally identifiable information, e.g., classifying animal pictures,
we may use an arbitrary large ϵ.
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We find this measure can precisely capture the sensitivity level
of dataset in machine learning. Specifically, ASRM = 0.5
indicates that LiRA is equivalent to random guessing. Thus,
all samples are safe, the dataset is not sensitive to the model
M , and we can use a larger ϵ setting. ASRM ≈ 1 indicates the
LiRA can correctly identify almost every participating sample.
Thus, the dataset is highly sensitive under the model M , and
a smaller ϵ value is needed to protect sample privacy. Initial
evidence shows that this measure is indeed dataset- and model-
specific. Figure 1a shows that ASRM varies significantly
over different datasets and corresponding models and correctly
shows ≈ 0.5 for randomly generated datasets.

More interestingly, since LiRA and ASRM are dataset-
specific, we can modify the dataset to lower its sensitivity
level.

A simple experiment shows that ASRM decreases with the
increasing number of randomly masked features (see Figure
1b). This gives us an opportunity that we may adjust the
sensitivity level of a dataset to relax the ϵ setting in DP-SGD.
Such a method is also possibly optimized to achieve good
utility and privacy preservation.
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(a) ASRM variation across datasets. The model trained on
a randomly generated dataset has ASRM ≈ 0.5.
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(b) ASRM decreases with more masked features (MNIST).

Fig. 1: ASRM variation across different datasets and modified
versions of the same dataset. All models are trained using DP-
SGD with a theoretical ϵ = 8. Abbreviations: M (MNIST), EM
(EMNIST), FM (Fashion-MNIST), C10 (CIFAR-10), C100
(CIFAR-100), IN (ImageNet-1k subset), R (Randomly gen-
erated dataset).

Scope of Research. This paper studies two important
problems: (1) a practical method for guiding the selection
of ϵ value in differentially private machine learning, and (2)
modifying a dataset to allow more relaxed ϵ settings to achieve
a better balance between privacy and utility.

We have adopted the attacking success rate (ASR) of LiRA
as the basic measure to indicate the practical privacy risk

of a dataset under a specific model release, due to its tight
connection with the definition of differential privacy. We have
analyzed why this measure is data- and model-specific based
on the definition of the hypothesis testing method (Section
IV).

We further investigate possible dataset modification strate-
gies that can lower the sensitivity of the dataset while not sig-
nificantly damaging its utility. With lowered dataset sensitivity,
we can apply relaxed ϵ settings, which can help achieve much
better utility. The basic dataset-sensitivity reduction strategy
is inspired by feature suppression used by data anonymization
[20], i.e., masking sensitive features to protect privacy. Our
method incorporates model explanation techniques, such as
LIME [21] and SHAP [22], to identify utility-sensitive and
privacy-sensitive features, respectively, from the target util-
ity task and an auxiliary identity-related task. For example,
distracted driver classification is an important utility task for
smart vehicles, which helps identify tired or distracted drivers
and prevent potential car accidents. The training data contains
(input: driver image, label: type of distraction) pairs. It’s easy
to define an auxiliary identity task by replacing the labels
with the identities of the drivers. We find that if the top
features (e.g., pixels in images) from both types of tasks are
not entirely overlapping, we can always extract a subset of
features to suppress that helps reduce the dataset sensitivity
while minimizing the loss of data utility. The lowered dataset
sensitivity allows us to set a higher ϵ value in DP-SGD.

We show that with our approach, we can achieve the same
level of practical privacy protection (i.e., ASRM ) with much
better-preserved utility in experiments. We have used well-
known datasets, e.g., MNIST, CIFAR10, facial expression
datasets, and distracted driver detection datasets [23] in ex-
periments. Facial expression and distracted driver detection
datasets are adopted to intuitively show how the identity and
utility tasks are defined in our approach. On feature-masked
datasets, we observe low ASRM values (the practical privacy
threats) even with theoretical ϵ values 5-10 times larger than
the unmasked ones and 22%-41% better model quality.

In summary, we conclude our contributions as follows:
• We are the first team to investigate the data and model-

specific nature of the LiRA attack, which can guide the
selection of theoretical ϵ settings for specific modeling
tasks.

• We show that the LiRA-based attacking success rate can
be reduced via masking features of the target dataset,
which can be optimized to achieve a better balance
between utility and privacy.

• We have demonstrated that our methods work as expected
in experiments on real datasets and modeling tasks. We
have also shared the source code for researchers to
reproduce the results.

The remaining sections cover the following topics. We
explore related works in Section II, introduce key background
information in Section III, provide insights into the core ideas
of this paper, and how we put our feature masking method
into action in Section IV. Results from our experiments are



discussed in Section V. Lastly, we conclude our work in
Section VI.

II. RELATED WORKS

Differential privacy, established by Dwork et al. [24], is the
most well-accepted theoretically justifiable privacy protection
method. It has been integrated into deep learning via methods
like DP-SGD [11], DP-Adam, and DP-RMSProp [25]. Despite
its strong theoretical guarantees, the application-specific set-
ting of the privacy budget (ϵ) remains elusive, as the theoretical
privacy budget ϵ setting is agnostic to datasets and models
[26]. Real-world applications often use a relaxed setting, e.g.,
Apple’s reported ϵ values of 2 to 16 for user activity analysis
[15] and Google’s 2.64 for COVID-19 community mobility
reports [16], which raise concerns about the actual protection
power.

Carlini et al. [17] proposed a likelihood ratio attack (LiRA)
based on a black-box membership inference game using hy-
pothesis testing. In their offline version of LiRA, adversaries
aim to calculate the probability of rejecting the hypothesis
that a target sample is not part of the training data distribu-
tion. According to Ahmed et al. [19], since LiRA operates
within a black-box membership inference game, there exists
a differential privacy distinguisher that gives the same results
as LiRA’s.

Some researchers also combine differential privacy with
feature selection. Zhang et al. [27] consider the issue of
privacy loss when data have a correlation in machine learning
tasks and use differential privacy to privately select important
features from datasets to avoid compromising privacy in the
correlation of features. Pittaluga et al. [28] use differential
privacy to privatize the features in the sample and design a
feature-level differential privacy to guarantee privacy. How-
ever, none of the existing works interpret and guide the ϵ
setting from the perspective of feature importance

Feature suppression was used in data anonymization [20]
to hide those features that generalization does not work. We
use it to lower a given dataset’s sensitivity level, i.e., the
LiRA attacking success rate ASRM . It explores a possible
way of combining traditional data anonymization methods and
differential privacy to achieve better utility preservation with
solid theoretical privacy guarantees.

III. PRELIMINERIES

A. Differential Privacy

Differential Privacy (DP) aims to enable the analysis of
a dataset while ensuring that the inclusion or exclusion of
any single individual’s data does not significantly affect the
outcome of the analysis. Mathematically, DP is defined as
follows:

(ϵ, δ)-Differential Privacy (DP). Let A be a randomized
function. We say that A provides (ϵ, δ)-differential privacy if
for all datasets D0 and D1 differing on at most one element,
and for all O ⊆ Range(A),

Pr[A(D0) ∈ O] ≤ eϵ × Pr[A(D1) ∈ O] + δ

where δ is an ignorable small value, often ≪ N , the number
of samples in the dataset, and ϵ is often called the privacy
budget. In the context of machine learning, the adversary’s
ability to distinguish if the model A is trained on D0 or D1

is bounded by eϵ, and δ is the probability that the bound fails
to hold.

Since a differentially private deep learning algorithm, such
as DP-SGD [11], involves many steps of calculation and
randomization, a specific privacy budget accounting method
is used to aggregate step-wise privacy budgets to derive the
estimate of the overall privacy budget ϵ. This estimate is often
called the theoretical ϵ, which is often considered conservative,
i.e., the actual ϵ is smaller.

Offline Likelihood-ratio test. Following the definition of
differential privacy where D and D/x differ in sample x,
Carlini et al. [17] present both the online and offline LiRA
hypothesis testing methods. The online LiRA test requires
attackers to train multiple shadow models on both in-domain
and out-domain datasets, resulting in extremely high computa-
tional costs. In contrast, the offline LiRA test does not use in-
domain information and relies solely on out-domain samples,
which significantly reduces computational costs. Therefore, we
choose the attacking success rate (ASR) of the offline LiRA
test as the indicator of the sensitivity of sample (x, y). To
test the membership of (x, y), we measure the probability of
observing confidence as high as the target model’s under the
null hypothesis that the target point (x, y) is a non-member as
follows:

Λ((x, y)) = 1− Pr[Z > ϕ(q)], where Z ∼ N (µout, σ
2
out)

ϕ(q) = log
q

1− q
, where q = M(x)y

For a new sample x to be tested, we apply the specific
model M(x) and test whether its output’s log-likelihood-ratio
log q

1−q is significantly higher than the typical out-domain’s,
i.e., we determine the new sample as a member sample when
Λ(x) > threshold. The threshold is set to 0.5 [17].

Based on this test, we can estimate the ASR of each sample
in the dataset in a batch-based method. Specifically, we start
by training n shadow models M0...n on n randomly sampled
subsets of the original dataset, which serve as the hypothetical
in-domain shadow datasets. Each shadow dataset, Di

IN , is
constructed by randomly picking samples from the entire
dataset a probability of 0.5, and the remaining unselected
samples are the out-domain samples, Di

OUT . Di
OUT samples

go through the model Mi and the log-likelihood conversion
of their outputs roughly follows a normal distribution, which
is used to estimate the distribution parameters µout and σ2

out.
For each sample xj in the dataset, we have n attacking results
LiRA(xj ,Mi) which will be used to compare to the ground
truth label G(xj ,Mi) = “in-domain” or “out-domain”. We
compute the ASR of sample xj as follows:

ASR(xj) =

n∑
i=1

1(LiRA(tj ,Mi) == G(tj ,Mi))/n



Dataset Sensitivity. Furthermore, following the worst-
case scenario of differential privacy, we can also measure
the overall sensitivity of a dataset under a model M with
ASRM = maxASR(xj), j = 1..N , for N samples in the
dataset. Intuitively, the highest sample ASR determines the
sensitivity level of the dataset, i.e., the worst case of the dataset
under the attack.

IV. REDUCING DATASET SENSITIVITY VIA FEATURE
MASKING

In this section, we begin by discussing the rationale behind
our method and outlining our threat modeling. Then, we
present the main concepts and definitions of feature masking
for reducing the empirical lower bound.

A. Motivation and Threat Modeling

Differentially private machine learning aims to train ma-
chine learning or deep learning models that are resilient to pri-
vacy attacks, such as membership inference [29]. A common
DP learning algorithm, e.g., DP-SGD, allows the model owner
to specify the privacy budget ϵ in (ϵ, δ)-differential privacy –
the smaller the ϵ, the better the privacy is preserved. However,
this privacy setting is independent of the dataset and trained
model, ignoring practical privacy risks the model may have.
Our purpose is to study empirical privacy risk to derive better
data- and model-specific privacy measures. The initial results
on the LiRA (Section III-A) imply that the privacy level of one
sample can be estimated with the hypothesis testing version
of the membership inference attack. Before diving into the
details, we introduce the threat modeling for privacy attacks
under the deep learning environment.

Protected assets: Identities of training data examples, i.e.,
the user who contributed or is related to a sensitive training
sample. Examples: samples can be used to directly identify the
owner, e.g., a face image; or samples contain unique features
that can be used to link other data sources, e.g., tooth images,
if linked to a person’s dental records, can be used to identify
a person.

Involved parties: Data and model owners and attackers.
Data and model owners may use differential privacy to dis-
guise the training of the model. The training process is secure
and private, and no information is leaked. The learned model
might be exposed via a service interface.

Adversarial capability. We assume the learned model
might be exposed via a service interface that might be under
either white-box or black-box privacy attacks. A white-box
attack can access the internal structure of the model, while
a black-box attack can only use the model prediction service.
We also assume attackers know what the model is used for and
the training data distribution but not individual training data
examples. Attackers will try to breach the privacy of individual
training data examples, e.g., via membership inference attacks.

B. LiRA Attacking Success Rate is Data and Model Specific

We examine the definition of the offline version of
LiRA to show that the ASR is data and model-specific.

Note the hypothesis testing method needs to train models,
M1 . . .Mn, each of which holds H0 (does not contain the
canary examples) true or not. Each test is done by determining
whether Λ((x, y)) > threshold holds as decipted in Section III.
Therefore, the testing is inherently tied to the model and the
dataset.

On random datasets, all the models essentially perform ran-
dom guessing, and ASRM ≈ 0.5. As expected, we have found
that ASRM varies by datasets and models in experiments.
Furthermore, we have noticed by modifying the dataset, e.g.,
randomizing the labels or removing sensitive features, ASR
can be significantly reduced (Figure 4). This observation
inspired us to find ways to reduce ASRM for a specific
dataset. We consider a few candidate methods as follows.

1. Lowering ϵ. In addition to the inherent randomness of the
dataset, a lower privacy budget ϵ may push down the empirical
privacy risk as well, but it also reduces more data utility, which
is against our goal. However, it’s still important to learn how
the measure ASRM changes with the setting of ϵ. If they are
positively correlated, we can use this correlation to guide the
setting of the privacy budget for a modified dataset, as we will
show in the experiments.

2. Reducing dataset sensitivity. Since differential privacy is
designed to protect the privacy of human-related data, intu-
itively, each dataset is associated with some level of privacy
sensitivity, depending on how it can be used to explore private
information. There are candidate methods for lowering dataset
sensitivity. (1) Injecting noise at the instance level to disguise
the private information and thus reduce the overall dataset
sensitivity. This approach is adopted by locally differential
privacy [30], which, however, leads to significantly more utility
loss than the global differential privacy approach used by DP-
SGD. (2) Identifying and removing privacy-sensitive features
(i.e., the feature masking approach). If we model a privacy
attack as a learning task – recovering the human-related
identity information from the training examples, we might be
able to identify the features that help this task most and then
remove them. Experiments show that such a procedure indeed
can help reduce dataset sensitivity represented with ASRM .

Approximately equivalent ϵ settings. A key hypothesis
is whether different ϵ settings for the original and modified
datasets provide equivalent practical privacy protection. So
far, there is no method for finding the exact practical privacy
guarantee for a theoretical ϵ setting. However, we think the
attacking success rate of LiRA might be a close one indicating
a practical privacy guarantee. We thus define the equivalency
as follows.

Let Mϵ,D be a model trained with (ϵ, δ) differential privacy
on D, and Mϵ,D′ trained with (ϵ′, δ) differential privacy
on a modified dataset of D. The ASRs are ASRMϵ,D and
ASRMϵ′,D′ , correspondingly. Assuming a small δ (e.g., δ =
10−5) is ignorable. We say the settings ϵ for D and ϵ′ for D′

are approximately equivalent, if

ASRMϵ,D ≈ ASRMϵ′,D′



In the following sections, we will explore the idea of feature
masking for achieving lower ASR and then optimize the
masking methods to preserve utility as well.

C. Optimized Feature Masking

Identity and utility tasks. Instead of examining a real
privacy attack on the target model or dataset to identify
the feature sensitivity level, we use an identity task as the
surrogate to understand the feature sensitivity of the dataset.
In contrast, we name the original modeling task as the utility
task. It’s best to understand the two tasks in terms of real
applications. For example, a facial expression recognition task
is a utility task. Since the training data is collected from several
persons’ expressions, the data can also be used to learn who
might be the contributors, which is defined as the identity task.
In another example, a self-driving dataset is originally used to
identify all kinds of objects from the captured scene: roads,
trees, sidewalks, pedestrians, etc., which is the utility task.
The identity task can be whether the scene contains persons,
which can be used to rank the person-related features that are
potentially linked to privacy protection.

One may argue that such an identity task may not be
easy to define in some applications. The role of identify task
represents the model builder’s best knowledge about privacy
sensitive information. It provides some hints to our approach
that masking certain features might reduce the ASRM value.
With the ASRM calculation procedure, the model builder can
always verify whether the masking helps privacy protection
and whether it damages utility.

Feature privacy sensitivity. We consider a sensitive dataset
D comprising N samples {xi}, i = 1..N , each with K
features {Fj}, j = 1..K. The first crucial step in our method
is to ascertain the sensitivity level of each feature in D.
This sensitivity level, which we term the Feature Privacy
Sensitivity (sj) for each feature Fj , is a pivotal factor in
our feature masking strategy. With a surrogate identity model
I(D,Z) : z = g(x), z ∈ Z, where Z is a set of identities,
we design a method to quantify the feature-level sensitivity.
Intuitively, this model, trained on a labeled dataset {(xi, zi)},
with crafted identity-related labels zi ∈ Z, can output person-
related information, e.g., whether an image x contains a person
z. The feature importance, as it tells the feature’s contribution
to the identity task, can be used to define the feature privacy
sensitivity sj , which can be captured by a model explainer, like
SHAP [22] or LIME [21]. The effect of different explainers
has been evaluated in experiments. For simplicity, assume we
use SHAP values of the identity task as the feature sensitivity.
We only consider positive SHAP values as they indicate the
features’ positive contribution to the identity task:

sj =

{
sj if sj > 0

0 otherwise.

Upon determining the feature privacy sensitivity, our next
step is to mask features based on their sensitivity levels and
their values to the utility task. We consider both privacy

loss and data utility and try to achieve an optimized balance
between the two as follows

Utility-optimized masking. Similar to the definition of
feature privacy sensitivity, e.g., with SHAP values, we can also
derive feature utility sensitivity in terms of the utility task and
a utility model M(D,Y ), where Y is a set of utility labels,
e.g., facial expressions in facial expression datasets. We define
the feature Fj’s utility sensitivity, uj , as follows:

uj =

{
uj , if uj > 0

0, otherwise

Let the dot-product of the normalized utility-sensitivity vector
u and privacy-sensitivity vector s represent the extent of shared
features between the identification and utility models. Ideally,
when u and s are orthogonal, i.e., uT s = 0, there is no
overlap between identity-related and utility-related features.
This would make it straightforward for the data owner to
eliminate identity-related features without affecting utility.

Fig. 2: An example of feature utility sensitivity and privacy
sensitivity

However, as shown in Figure 2, it’s likely to have features
with both high utility and privacy sensitivity levels, e.g.,
some critical features in face images shared by both the
expression classification and identity tasks. Thus achieving
uT s = 0 in real-world scenarios might be impossible. Instead,
we can optimize the masking mechanism to maximize the
utility with a desired amount of privacy preserved. Specifically,
we formulate an optimization problem as follows to find a
masking vector m:

argmax
m

mTu

s.t. mT s < (1− α)

K∑
j=1

sj ,

where α is the model owner’s desired privacy preservation
level and we use

∑
sj to approximately represent the total

amount of privacy information the features bring. The opti-
mization will try to pick up the optimal mask maximizing the
amount of utility, i.e., mTu, with acceptable privacy loss. This
linear optimization problem is often solvable with the standard
technique.

Implementation details. As shown in Algorithm 1 and
Figure 3, our implementation uses class-wise feature privacy
sensitivity generation to preserve utility best and reduce pri-
vacy information during feature masking. Specifically, the



Fig. 3: Pipeline of feature masking

data owner uses the model explainer to generate a privacy-
sensitivity vector si,z for a sample xi,z and utility-sensitivity
vector ui,y for a sample xi,y , where the same sample xi

showing up in the two different tasks and labeled as class z
and y from label set Z and Y , respectively. By summing up the
feature sensitivity vectors for all samples in one class, we get
a class-wise feature privacy-sensitivity vector Sz and utility-
sensitivity vector Uy . In case the optimization problem is not
solvable2, we use the top-k% method instead. Specifically, we
identify the features with top-k% privacy-sensitivity and define
the mask for each class. In the utility-oriented optimization
method, we can also similarly derive a per-class mask.

With a class-wise binary mask mz in place, we can pro-
cess images from class z to mask (or retain) their features
accordingly: x′

i,z = xT
i,zmz .

Algorithm 1 Feature-masking mechanism

Require: Identity Model I(D,Z), Image set D of size Nd

with classes 1, 2, . . . , Z, size Nz of class z, Explainer E()
Ensure: Masked Image set D′

1: function FEATUREMASKING(M(D,Y ), D)
2: for i← 1, Nd do
3: si,z ← E(I(D,Z), xi,z) ▷ Compute individual

privacy-sensitivity vector
4: ui,y ← E(M(D,Y ), xi,y) ▷ Compute individual

utility-sensitivity vector
5: end for
6: Sz ← 1

Nz

∑Nz

i=1 si,z

7: Uy ← 1
Ny

∑Ny

i=1 si,y ▷ Aggregate to class-wise

8: mz ←

{
Linear optimization if solvable

Top-k% method otherwise
9: for i← 1, Nd do

10: x′
i,z ← xT

i,zmz ▷ Mask the images
11: Add x′

i,z to D′

12: end for
13: return D′

14: end function

2This occurs with the probability of 3% in our experiments.

V. EXPERIMENTS

We have conducted comprehensive experiments to answer
the critical research questions in our study. 1) How does
ASRM change over different datasets or versions of modified
datasets? 2) With different versions of feature-masked data,
how do the theoretical ϵ values differ at the same ASRM of
utility models? 3) How do different feature masking strategies
affect data utility on the utility models? 4) How does the choice
of model explainer affect performance? And 5) What are the
costs of the proposed methods?

A. Setup

Datasets: In addition to widely-used datasets such as
MNIST, CIFAR10, and ImageNet-1K, we employ three facial
expression datasets: RaFD [31], JAFFE [32], and TFEID [33],
along with a distracted driver activity recognition dataset,
100-Driver [23], to demonstrate the performance of feature
masking in practical scenarios. These datasets were selected
because they clearly contain sensitive information and they
intuitively show how two distinct sets of labels: utility labels
and identity labels (i.e., the identities of the contributors) can
be defined on the same dataset, corresponding to the utility
and identity tasks. The utility labels represent 7 types of facial
expressions in the facial expression datasets and 22 categories
of distracted drivers’ activities in the driver activity recognition
dataset. Each dataset has also clearly defined which human
subject each image belongs to, certainly without real identity
information. In training models, we split each dataset into
training and testing sets using an 80:20 ratio.

Some preprocessing steps have been performed on these
datasets. The RaFD dataset contains images of 67 subjects,
each exhibiting 8 distinct emotional expressions. The JAFFE
dataset includes 210 images of 10 female subjects, each
displaying 7 expressions, repeated three times. The TFEID
dataset consists of images from 40 subjects, each with 8
different facial expressions. Since the removal of sensitive
features requires a model explainer to interpret each training
sample, having too many classes can degrade explanation
quality. To mitigate this, we randomly selected 10 identities
from the RaFD and TFEID datasets, resulting in 80 images per
dataset. The 100-Driver dataset includes 100 identities, each
performing 22 distinct activity types. Each subject’s activity
type contains 16 images of different settings, e.g., with/without



wearing, multiple cameras with different angles in one vehicle,
and different vehicles. In total, there are 470K images. Due
to computational limitations, we randomly sample the same
number of images for both identity and distraction labels,
which generates a subset with 35K images.

Model training. When using Differentially Private Stochas-
tic Gradient Descent (DP-SGD) in training models, we adopted
the following parameter settings: We use ResNet-101 for
ImageNet-1K and 100-Driver[23] datasets for both the utility
and identity models due to the higher complexity of these
datasets, and ResNet-18 for other smaller datasets. All models
are adjusted only in terms of input dimensions like image size
and channel number to suit our dataset. A learning rate of
0.001 and epochs of 150 were set. We used a batch size of 5.
Additionally, to prevent overfitting, an early stopping mecha-
nism was implemented, halting training when no improvement
was seen on the validation set for a set number of epochs.

Dataset Identity Utility Identities Size
RaFD 0.737 (+/-0.031) 0.293 (+/-0.027)

10
80

JAFFE 0.832 (+/-0.025) 0.327 (+/-0.011) 210
TFEID 0.719 (+/-0.028) 0.286 (+/- 0.024) 80

100-Driver 0.913 (+/-0.012) 0.721 (+/- 0.016) 35208

TABLE I: Baseline models on the three datasets.

Model Explainers. To evaluate the impact of model ex-
plainers, we selected two of the most widely used methods:
SHAP3 and LIME4. Both were employed to generate feature
sensitivity scores for privacy and utility assessments. Since
SHAP is more efficient for batch processing, we used it to
address the first three questions. LIME, on the other hand,
was applied to analyze the variations introduced by different
model explainers.

Evaluation metrics. The ASRM values are generated with
the hypothesis testing method described in Section III-A.
ASRM is the maximum sample ASR over all samples in
a dataset to be consistent with the worst-case definition of
differential privacy. ASRM,ϵ is used to indicate ASRM on
DP-SGD trained models. We use model accuracy to evaluate
the utility models.

Deriving ASRM . To conduct the LiRA, we train 1000
shadow models5 – for each shadow model we flip coins for
each sample to split the dataset into in-domain and out-domain
samples, which are used to train the shadow model. Then, we
apply the offline version of LiRA [17] to estimate the ASRM .
The smaller the ASRM , the more difficult it is to distinguish
samples, and thus the privacy is better preserved.

B. Result Analysis: ASRM for Modified Datasets

The first goal of our approach is to identify a data- and
model-specific measure that can evaluate the practical privacy
risk. We have shown some examples earlier in Figure 1b that
ASRM can serve this purpose well. Here, we show more

3https://github.com/shap/shap
4https://github.com/marcotcr/lime
5Training 1000 ResNet-18 models on an NVIDIA TITAN V100 averagely

spend 19 hours, and ResNet-101 spend 42 hours
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Fig. 4: Figure (a) shows the decreasing trends of ASRM

when top-k important features are masked for CIFAR-10 and
ImageNet-1K. Figure (b) demonstrates that with the increasing
percentage of randomized labels (representing data quality
reduction), ASRM decreases for MNIST.

detailed experiments to see how different dataset qualities may
affect ASRM . In Figure 4, we take the well-known datasets
CIFAR-10 and ImageNet-1K and progressively mask the top-
ranked features (pixels), and their ASRM drops correspond-
ingly. To understand how label quality may affect ASRM ,
we also randomize a portion of MNIST’s label, and we have
observed a similar decreasing trend. These results motivated us
to explore the feature masking approach to change the dataset
sensitivity to achieve better utility and privacy balances.

C. Result Analysis: ASRM,ϵ vs theoretical ϵ

To understand the correlation between ϵ and ASRM,ϵ, we
take the three versions of datasets for experiments: the original
(Original), the dataset with 30% randomly masked features
(Random FM), and that with optimized feature masking
(Optimal FM). Each point in Figures 5 represents a set of
experiments: we apply DP-SGD with the specific theoretical
ϵ setting to train a set of identity models and then use
the LiRA to derive the corresponding ASRM . The result
in Figure 5 shows that (1) ASRM is positively correlated
with the theoretical ϵ. However, the correlation is stronger
for the original data. Due to the reduced privacy sensitivity,
the FM methods have a narrower range of ASRM . (2) The
optimized FM has advantages in significantly lower ASRM ,
which implies reduced practical privacy risk. (3) For the
same level of ASRM , we can probably use a much higher
theoretical ϵ for DP-SGD. For example, for JAFFE, ϵ = 1
gives ASRM around 0.525 (the 2nd red dot from left to right
on the DP-SGD curve in Figure 7a. With the same ASRM , the
ϵ for the optimized feature-masked dataset can be relaxed to
around 4. The relaxed ϵ will allow for preserving more useful
information for the utility models, which will be examined
next.

D. Result Analysis: Optimizing Feature Masking

As discussed in Section IV-C, selecting an appropriate α
for generating feature masks is critical. Here, α represents the
extent of dataset utility sensitivity to be reduced. Figure 6a
illustrates how the performance of the utility model changes

https://github.com/shap/shap
https://github.com/marcotcr/lime
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Fig. 6: FM optimization algorithm helps preserve better data
utility

with different α settings. Interestingly, increasing α initially
enhances the utility model’s performance, but beyond a certain
threshold, it begins to decline for the facial expression datasets.
Specifically, we observe that the utility model achieves the best
accuracy at α = 0.2 for RaFD and TFEID, and at α = 0.1
for JAFFE. For the 100-Driver dataset, α = 0.1 and α = 0.3
both result in comparable performance, but for better privacy
protection, we select α = 0.3.

To explore the impact of optimization on utility models
trained with DP-SGD, we compare random feature masking
and optimized feature masking. We assess how these methods
affect the performance of utility models when training with
DP-SGD at ϵ values that correspond to ASRM ≈ 0.54
(marked by the black dotted line in Figure 5). Figure 6b
and Table II demonstrate that applying optimized feature
masking to datasets results in significantly improved ϵ and
performance of utility models when ASRM ≈ 0.54, compared
to solely using DP-SGD. We conclude that utility models
trained on datasets processed by optimized feature masking
offer comparable privacy protection while allowing for much

larger ϵ values during DP-SGD training. This increased ϵ
enables the utility models to achieve a better privacy-utility
tradeoff compared to models trained on the original datasets
or those using random feature omission.

Dataset Orig. DP-SGD FM+DP-SGD
ϵ Acc ϵ Acc

JAFFE 1.73 0.1824 6.87 0.335
RaFD 1.65 0.1717 6.54 0.291
TFEID 1.78 0.1762 4.33 0.287

100-Driver 2.13 0.5731 7.14 0.637

TABLE II: ϵ and Accuracy of utility models when ASRM ≈
0.54 (the black dotted line in Figure 7).

E. Result Analysis: Impact of Explainer

In the previous experiments, we have used SHAP to im-
plement the feature masking algorithm. It’s also interesting
to understand whether the method is explainer-specific. In
this section, we replace SHAP with LIME and reproduce
the results. As shown in Figure 7 and Figure 8, LIME does
not change the patterns much for both privacy protection and
utility preservation on the facial expression datasets. However,
on the 100-Driver dataset, the optimized FM curve overlaps
with the random FM curve, even with a smaller α = 0.1
(Figure 7d), as opposed to a larger α = 0.3 for SHAP
(Figure 5d). This suggests that LIME-based optimized FM
may not perform as well as SHAP on more complex model
architectures. We also observe that models using LIME exhibit
larger standard deviations in accuracy (Figure 8b) compared
to Figure 6b. Figure 9 looks into the stability of SHAP and
LIME when applied with optimized FM at ϵ = 7. SHAP
consistently provides better stability across all datasets. We
attribute this to LIME being a localized interpretation method
[21], which is more appropriate for simpler models where lo-
calized interpretability suffices. Moreover, LIME’s reliance on
random sampling may introduce additional variance compared
to SHAP.

In conclusion, when deploying optimized FM in practice,
SHAP appears to be the more suitable backbone explainer
than LIME.
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F. Result Analysis: Time Cost

In this section, we evaluate the time cost of the optimized
feature masking (FM) method. This approach involves two
main steps: (1) generating feature privacy and utility sensitivity
levels for each image with an explainer, and (2) perform-
ing class-wise optimization of the feature masks. Figure 10
presents the average time cost for three facial expression
datasets using the ResNet-18 model and for the 100-Driver
dataset using the ResNet-101 model with SHAP as the ex-
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Fig. 10: Time cost of sensitivity generation by SHAP and
optimizing feature masks across datasets.

plainer. To assess the potential time cost for larger, real-world
datasets, we also include the time cost for the ImageNet-1K
(IN) dataset on the ResNet-101 model. Although the per-image
time cost remains in the seconds range (Figure 10a), thanks
to SHAP’s batch-processing capability, the total time for large
datasets like 100-Driver and ImageNet-1K can accumulate to
hours or even days. Methods like sampling can be applied to
reduce the first-stage cost. In contrast, the optimization of fea-
ture masks takes only a few minutes for the facial expression
datasets, 100-Driver, and ImageNet-1K (Figure 10b).

G. Discussion

We have experimented with a variety of datasets to observe
the data- and model-specific characteristics of ASRM . Among
these datasets, we have used facial expression and 100-driver
datasets for identity-related feature masking experiments. For
datasets with no clear identity elements, like those used in self-
driving car technology featuring pedestrians, buildings, and
address plates, defining identity tasks can be trickier, probably
tightly related to the analysis of application-specific sensitiv-
ity. Nevertheless, our work has established a framework to
understand the inherent sensitivity of the dataset and guide the



setting of privacy parameters for differential privacy methods.
For a specific application and dataset, one can always try
different identity-related tasks and evaluate them within our
framework.

VI. CONCLUSION

The parameter setting of differentially private machine
learning is detached from specific applications, datasets, and
models, which is considered a unique feature. However, to
better understand the tradeoff between privacy and utility, e.g.,
finding a justifiable relaxed ϵ setting, we have to look into more
data- and model-specific auxiliary measures. Recent studies
on likelihood-ratio-based membership inference attacks, LiRA,
have given us special tools to tackle this challenging problem.
We have shown that the LiRA-based attacking success rate
ASRM provides a well-justified data- and model-specific mea-
sure for evaluating practical privacy risks for models trained
with or without DP-SGD. We explore the factors affecting this
attacking success rate to identify a better way to set the theoret-
ical differential privacy budget. With the proposed optimized
feature masking methods, we demonstrated in experiments
that models trained on datasets with masked features and
relaxed ϵ settings can still achieve equivalent practical privacy
protection (i.e., similar ASRM levels) compared to original
DP-SGD. Meanwhile, the optimization method preserves the
utility-critical features and, thus, better model quality. Our
approach offers a promising framework for fine-tuning the
privacy budget setting in terms of specific data and models
to achieve better privacy and utility balances.
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