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ABSTRACT
The availability of high-frequency trade data has made it possible
for the intraday forecast of price patterns. With the help of tech-
nical indicators, recent studies have shown that LSTM based deep
learning models are able to predict price directions (a binary clas-
sification problem) with performance better than a random guess.
However, only naïve recurrent networks were adopted, and these
works did not compare with the tools used by finance practitioners.
Our experiments show that GARCH beats their LSTM models by a
large margin.

We propose to adopt an autoregressive recurrent network instead
so that the loss of the prediction at every time step contributes to
the model training; we also treat a rich set of technical indicators at
each time step as covariates to enhance the model input. Finally, we
treat the problem of price pattern forecast as a regression problem
on the price itself; even for price direction prediction, we show that
our performance is much better than if we model the problem as
binary classification. We show that only when all these designs are
adopted, an LSTM model can beat GARCH (and by a large margin).

This work corrects the poor use of LSTM networks in recent
studies, and provides “the” baseline that is able to fully unleash
the power of LSTM for future work to compare with. Moreover,
since our model is a price regressor with very good prediction
performance, it can serve as a valuable tool for designing trading
strategies (including day trading). Our model has been used by
quantitative analysts in Freddie Mac for over one quarter, and is
found to be more effective than traditional GARCH variants in
market prediction.
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1 INTRODUCTION
AI and data science have gained significant momentum in adoption
thanks to the advancement of deep learning, which allows simple
end-to-end model training with much higher accuracy than tradi-
tional machine learning models. A key feature of data science is to
apply statistics, data analysis and machine learning to find values
from the data in a specific domain, and deep learning models have
enabled effective applications in many domains such as computer
vision, natural language processing, medicine and autonomous
driving.

Using deep learning models as FinTech tools has recently gained
attention where predictive models are built to forecast the stock
price in the future. Recurrent neural network (RNN) supports effec-
tive prediction from a temporal sequence and becomes a natural
and promising deep learning tool for stock price prediction that can
beat conventional statistics and machine learning approaches. Sur-
prisingly, our literature review shows that even through a number
of works have been done in this direction, they are not configuring
the RNN in the best manner to carry out its predictive potential.
Moreover, statistical tools commonly used by finance practitioners
are also not compared as baseline approaches in these works.

In this work, deep learning practitioners and a financial domain
practitioner (i.e., Sibo Yan who is a PhD in Economics from UCLA)
work together as a team to deliver an effective RNN model that is
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Figure 1: A Many-to-Many Recurrent Neural Network

properly configured to serve as “the” baseline for future work to
compare against. We highlight the following features:

• The prediction problem should be modeled as a price regres-
sion even when we are considering the binary classification
problem of predicting future price directions.

• The RNN model should be autoregressve, allowing the loss
of the price prediction at every time step to contribute back
to the model training.

• As an RNN model does not work well with long sequences,
technical indicators computed over longer periods of time
(with different scales) can be used to improve the prediction
of an RNN model over short sequences at no additional cost
and should be utilized.

• State-of-the-art tools in the domain of finance prediction,
such as GARCH and ARIMA, should be compared to verify
the superiority of a proposed RNN model.

Our model takes technical indicators as covariates to improve
model prediction, and thus its design can easily utilize other data
sources when available, by extracting features form them to be
passed as covariates into our model (more discussion will be given
in Section 5). For now, let us assume that we want to predict the
future price of a stock, and all the data we have is a time series
of the historical prices of that stock. Our model has been used by
quantitative analysts in Freddie Mac for over one quarter, and is
found to be more effective than traditional GARCH variants in
market prediction.

The rest of this paper is organized as follows. We first review
RNN concepts and trade data analysis preliminaries in Section 2.
Section 3 describes our RNN model to predict stock prices and
compares it agains prior RNN models, and Section 4 reports the
experimental results. Finally, we review related work in Section 5
and conclude our paper in Section 6.

2 PRELIMINARIES
We assume readers are already familiar with RNN and deep learning
concepts, and we now provide a brief review of some key concepts
to help readers get familiar with our notations.

RNN. Figure 1 shows an RNN which takes an input sequence
(x1, x2, . . . , xT ) and predicts an output sequence (y1,y2, . . . ,yT ).
Here, each xt is a vector of input features at time t , such as a word
(in a sentence) that is embedded into a vector space, or the price of
a stock at time t (the vector has only one element in this case). Each
yt is the predicted output at time t . For regression, yt is a scalar
like the predicted next stock price; let rt be the actual next stock
price, then we use a loss function ℓt = (yt − rt )

2 to measure the
error at time t . For classification, yt is a score vector (s1, s2, . . . , sk )
where si is the score of the i-th class; let the true class be i , then
loss ℓt is computed as the cross-entropy loss between yt and the
one-hot encoding of Class i , which equals ℓt = − log si . The overall
loss of the training/validation data sequence (x1, x2, . . . , xT ) and
(y1,y2, . . . ,yT ) is computed as the average loss L = 1

T
∑
t ℓt , and

the loss of a set of training mini-batch or a validation set (i.e., a set
of labeled sequences) is computed as the average value of L in the
set.

In Figure 1, a recurrence formula ht = fW (ht−1, xt ) is applied at
every time t , where ht is the hidden state at time t which captures all
the information up to time t as it sees (x1, x2, . . . , xt ). Bidirectional
RNN is also applicable and is popular in NLP, but we do not consider
it here since we are studying the price prediction problem and the
time is one-way (unlike, for example, sentiment analysis for an
entire sentence). In a vanilla RNN, we have fW = tanh(Whhht−1 +
Wxhxt ), and yt is read out from the hidden state ht as yt =Whyht .
Note thatW = (Whh ,Wxh ), since ht = fW = tanh(W vt ) where
vt = (ht , xt )T .

We call the RNN in Figure 1 as a many-to-many RNN, since it
emits an output yt at every time t . Since all the recurrence steps
share the same recurrence parameterW and the same read-out
parameterWhy , the loss ℓt at every time t will adjust the values of
W andWhy during back-propagation.

Such a strong supervision may not be possible in some applica-
tions like sentiment analysis of a sentence, where only one output
(positive/negative) is available after reading the entire sequence of
words in a sentence. In such a case, a many-to-one RNN is used
where the output is only yT and the loss function is defined only
over yT .
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For ease of presentation, we will simplify the RNN in Figure 1
into the RNN diagram in Figure 2(a), where h0 is omitted since it is
usually initialized as a zero state.
RNNVariants. If we treat the output (y1, y2, . . . , yT ) as intermedi-
ate features denoted as (o1, o2, . . . , oT ), we can stack another layer
of RNN on top that takes (o1, o2, . . . , oT ) as the input sequence,
which gives the stacked RNN in Figure 2(b) with 2 hidden layers
that can be depicted by:

h(1)t = fW (1) (h(1)t−1, xt ), ot = Wh(1)oh
(1)
t ,

h(2)t = fW (2) (h(2)t−1, ot ), yt = Wh(2)yh
(2)
t .

More LSTM layers can be stacked on top to extract higher-level
features before we use them to generate the output.

Vanilla RNN suffers from the vanishing gradient problem during
back-propagation: the gradients shrink as they back-propagate
through time, to the extent that the value is too small to contribute
enough to the stochastic gradient descent based model training. To
overcome this problem, the vanilla RNN unit can be replaced with
other units including LSTM [10] and GRU [5] which utilize internal
mechanisms called gates to regulate the flow of information, so that
the RNN model can process longer sequences. As a result, in the
RNN models presented in rest of this paper, LSTM is used instead
of vanilla RNN. Since LSTM and GRU exhibit the same external
interface as vanilla RNN, we skip their introduction.

Convergence of training can be further improved by performing
batch normalization [11] over the mini-batch input before ReLU
activation along the vertical (i.e., stacking) direction, and by per-
forming layer normalization [1] over the sequence input before
tanh activation along the sequence (i.e., time) direction.
High-frequency trade data are now readily available for intraday
market research. For example, the Trade and Quote (TAQ) database
available at the Wharton Research Data Services (WRDS) website
provides stock data including price, number of shares, and time
of each transaction (to the nearest second). On each weekday, the
market opens at 9:30 AM ET and ends at 4:00 PM ET, and the market
data in every second is recorded.

However, market microstructure noises are a major hurdle to-
wards the price analysis when the sampling frequency is too high
since the realized volatility will not be stable. As a well-established
conclusion, [19] shows that a sampling frequency of 5 minutes
or longer is a must for stable analysis, and thus most work on
high-frequency financial data samples the data into a time series of
5-minute unit or longer.

Instead of subsampling at a frequency of 5 minutes, we adopt
the approach by [7] which captures richer price information in
each 5-minute block. Specifically, we first aggregate trade data
from the TAQ database into 1-second blocks, remove trades that
were canceled or otherwise flagged as illegitimate (using TAQ’s
condition codes) and eliminate bouncebacks using an influence
statistic, following the exact steps described in Section 2 of [7].
Then, given all the cleansed (price, share) pairs in a 5-minute block,
we use the median share-price as a representative price for that
block, which is the median price per share treating each share
traded as a separate observation. Besides the median share-price,
we also extract additional features from the trades of each block,

such as the lowest and highest prices. Section 3 will provide more
details.
Statistical Method for Time Series Forecasting. AutoRegres-
sive Integrated Moving Average (ARIMA) is a class of widely-used
models that capture a suite of different standard temporal struc-
tures in time series data, and it has 3 hyperparameters. We denote a
specific ARIMA model as ARIMA(p,d,q). However, in finance data,
a change in volatility over time can cause problems when using
ARIMA.

In contrast, the Autoregressive Conditional Heteroskedasticity
(ARCH) method provides a way to model a change in variance in a
time series that is time dependent, such as increasing or decreasing
volatility. An extension of this approach named Generalized ARCH
(GARCH) further allows the method to support changes in the
time-dependent volatility, and is a popular tool used by finance
practitioners [3]. GARCH has 2 hyperparameters, and we denote a
specific model by GARCH(p,q). Since GARCH is the state of the
art in finance data analysis, it is our major competitor.
Evaluating Price Direction Prediction. Many works in stock
price prediction study the stock movement directions rather than
predicting the actual future prices, possibly because of the need of
data sparsification (into 5-minute blocks or more) due to market
microstructure noises. In this binary classification context, we typi-
cally translate the score s returned by a machine learning model
(such as logistic regression (LR) or neural networks) about price
rising by a sigmoid function P(s) = 1/(1+ e−s ). A natural idea is to
consider the price as rising if P(s) ≥ 0.5, and as dropping otherwise.

However, it is well known that in a high-frequency setting, a
large number of time intervals are characterized by zero returns,
meaning that class “Drop” (or 0) is overpopulated in comparison to
class “Rise” (or 1); the ratio is on average 54%:46% [4]. Due to this
class imbalance phenomenon, prediction accuracy alone is a biased
evaluation metric that favors class “Drop” (or 0). Thus, a receiver
operating characteristic (ROC) curve is typically used to evaluate
the price direction prediction quality where instead of using τ = 0.5
to specify the classification decision boundary P(s) ≥ τ , we vary
τ from 0 to 1 and compute the (true positive rate, false positive
rate) pairs along the way to plot such an ROC curve (see Figure 3
for an illustration), and the area under the curve (or simply, AUC)
measures how good the model prediction is.

3 APPROACH
Since high-frequency trade data need to be sparsified into 5-minute
blocks or more to mitigate market microstructure noises, most exist-
ing works study the binary classification problem of price direction
prediction as follows: given the historical pricesxt−k+1, . . . ,xt−1,xt
of k consecutive 5-minute blocks, predict whether the price will
rise or drop in the next 5-minute block at time (t + 1).
Prior LSTM models. [15] is probably the first work that applies
LSTMnetwork to pricemovement prediction. It considers 15-minute
blocks rather than 5-minute blocks, and for each block, the features
xt include the opening/closing/highest/lowest prices and trade vol-
ume. On top of the price data, a set of 175 technical indicators
is generated using the TA-Lib library (though details are not pro-
vided), which are used to expand xt into a vector of 180 features.
The class label yt is defined as 1 if the closing price of the current
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Figure 2: Simplified RNN Diagram

Figure 3: ROC Curve Illustration

15-minute block is less than that of the next block, and 0 other-
wise. A many-to-one LSTM network is used which predicts yt from
xt−k+1, . . . , xt−1, xt where k = 20, and binary cross-entropy loss
is used to train the model. However, the reported accuracy for next
direction forecast is merely 53%-55% which is not much better than
a random guess.

More recently, [4] further improves upon this model by using an
ensemble of LSTM networks. The difference is that [4] works with
5-minute blocks, uses a stacked LSTM network with 2 hidden layers
and input sequence of length 5, and trains 12 such LSTM networks
with the final prediction being decided by a weighted sum where
the weight of each individual model is proportional to its recent
performance measured by AUC. The work compared with machine
learning baselines such as lasso and ridge logistic regressions, as
well as an equally weighted LSTM ensemble, and shows that their
AUC-weighted LSTM ensembles achieves the highest AUC in the
range of 0.513–0.536 which is not much better than the AUC of a
random guess (i.e., 0.5).

On the other hand, the work lists the detailed features used in
xt including a comprehensive list of technical indicators and their
parameters as shown in Table A3 and Appendix B of [4] which
provide a valuable source for reference by later studies. They also
use the technical indicators at the sector/index level as features
in xt to consider effect of similar stocks, as well as a list of basic
features computed from the trades in each 5-minute block as shown

in their Table A2. Other features used in xt include price predic-
tions from rolling regressions (computed as AR(1) over 1 month
of observed opening/closing/highest/lowest prices) and the target
class probabilities P(yt ) and P(yt |yt−1).
OurModel.As a proof of concept, this work only considers the use
of the historical prices of a stock to predict the future price of that
stock, though other features such as sector-level technical indicators
(which consider other similar stocks) can be straightforwardly used
to expand xt to improve prediction.

Figure 4(a) shows the many-to-one RNN model used by existing
work, where each feature vector xt contains features including the
opening/closing/highest/lowest prices, trade volume, and technical
indicators; and yT predicts if the price will rise in time (T + 1).
There are two problems: (1) the label yT is to predict the indicator
function 1{xT+1 − xT > 0} which is a weak supervision: even
though the error (xT+1−xT ) could be large, the training regards the
current model parameter values as good as long as the direction is
correct. For example, let xT = 100 and even though xT+1 = 108, the
training will consider the model parameters to be good even when
they will lead to a prediction of xT+1 = 101, and another model
parameter setting that leads to a prediction of xT+1 = 106 will not
be considered much better. Moreover, the lack of the magnitude in
predictionwill render themodel useless formaking intraday trading
decisions, as a big drop in the next 5 minutes is a strong signal to
sell but a mild drop is not due to transaction fees and the possibility
of price rising in subsequent 5-minute blocks. We propose to
model the problem as a regression one by using the mean
squared error (MSE) as the loss function which directly tries
to minimize the difference between the predicted price yT
and the actual price xT+1. Since we have the actual value of xT+1
in each training sequence, we should use it rather than the vague
1{xT+1−xT > 0} to provide a strong supervision for model training.
Our price regression model can still be used to predict the price
direction as 1{yT − xT }, and so there is no need to make the model
itself a classification one that admits only weaker supervision.

Another problem with the model in Figure 4(a) is that only the
price xT+1 is used to adjust model parameters by back-propagation,
while previous prices x2, . . . ,xT are not utilized. This is probably
because existing work model the price of a 5-minute block itself
as a vector of opening/closing/highest/lowest prices rather than a
single price.
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Figure 4: RNN Model Comparison

Recall that we use the median share-price of each 5-minute
block t as its representative price, denoted by xt . This design allows
us to use an autoregressive many-to-many LSTM network as
shown in Figure 4(b) such that the error at each 5-minute block
in a price sequence contributes to the adjustment of the model
parameters. In our case, yt is predicting the value of xt+1 directly
rather than 1{xt+1 − xt }, and the errors in all the T time steps are
used to compute theMSE loss. Each input vector xt = (xt , ct )where
ct is a vector of covariates such as technical indicators at time
t which provides additional features than the median share-price
xt itself to improve prediction. This work only considers features
that are derived from historical prices of a stock as covariates, but
other features can also be integrated into xt to further improve the
prediction as we will describe in Section 5.

We use 15 basic features in ct which are extracted from the
trades within each 5-minute block t . These basic features are exactly
those listed in Table A2 of [4] except the number of market sweep
trades which we do not have access to. The basic features include
(1) price-related features such as the opening/closing/highest/lowest
prices, volume-weighted average price, maximum price difference,
etc., and (2) volume-related features such as the total number of
trades, the mean trade size, positive/negative volume (i.e., sum
of volume of those trades with price rising/dropping in the next
second), etc.

We also include all the technical indicators listed in Table A3
of [4] into our in covariate vector ct , which can be categorized into
different categories such as those on return v.s. risk (e.g., Sharpe ra-
tio), those on price and volume flow (e.g., accumulation/distribution
index), those on volatility (e.g., Bollinger Band) and those on over-
bought/oversold signals (e.g., stochastic oscillator, relative strength
index, commodity channel index, money flow index). We refer
readers interested in these well-engineered indicators to Appen-
dix B of [4] for a comprehensive introduction of these indicators,
but we remark that they all can be computed from the histori-
cal prices within a sliding window up to the current time-block
t . We follow [4] exactly to use different window sizes including
n = {6, 12, 36, 78, 234}, where the unit of n is 5-minute block and

thus 78 refers to an entire day (9:30 AM to 4:00 PM ET). This allows
us to capture the signals in different time scales ranging from 30
minutes to 3 days.

We remark that even with LSTM to mitigate the vanishing gradi-
ent problem, the network still cannot process very long sequences.
Our extensive tests show that a sequence length of 7 (5-minute
blocks) delivers the best performance, which translates to 35 min-
utes of historical price data. Therefore, the basic features provide
richer information inside each 5-minute block, while the technical
indicators capture signals in longer terms up to 3 days. In other
words, covariates in ci are complementary to the median share-
price of the 7 blocks that are inputted to the LSTM network, even
though the temporal information of the latter are already accumu-
lated by the LSTM network. Our experiments in Section 4 confirms
that the covariates improves the AUC of our LSTM model.

We also remark that our LSTM model can be used to predict
the median share-price into multiple future 5-minute blocks, since
our autoregressive model is intrinsically generative. Let the current
time-block beT , and our model predicts yT = x̂T+1. Then, since we
now have the prices all the way up to (T + 1), we can compute the
various technical indicators for time-block (T +1) to construct cT+1,
so that xT+1 = (x̂T+1, cT+1) can be used to predict yT+1 = x̂T+2,
and the process may continue to generate more predictions into
the future (though the accuracy may drop). One remaining issue is
that the basic features of cT+1 cannot be computed as the trades
in time-block (T + 1) have not been seen yet, but we can either
exclude the basic features from model covariates, or set them all to
be equal to the predicted x̂T+1.

Finally, we remark that our price regression model is not only a
more accurate price direction predictor, but also a promising tool
for intraday trading since we estimate the “median” price in the
next 5 minutes: there is a good chance that the price will go beyond
the predicted median in the next 5 minutes at which time one can
sell the shares bought in the current 5 minutes (we buy them since
we see there would be a big price rise as predicted by our model).

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2489



Table 1: AUC Scores of Algorithms Without Covariates

Stock Code m1-sig mm-sig m1-mse mm-mse arima garch

AA 0.511 0.524 0.58 0.611 0.602 0.629

C 0.507 0.519 0.579 0.609 0.605 0.613

DIS 0.511 0.513 0.576 0.613 0.599 0.614

IBM 0.513 0.526 0.566 0.58 0.597 0.61

KO 0.5 0.511 0.584 0.63 0.604 0.622

MSFT 0.504 0.512 0.569 0.599 0.587 0.614

UTX 0.513 0.521 0.571 0.601 0.601 0.611

CAT 0.505 0.522 0.576 0.599 0.601 0.617

DD 0.509 0.519 0.571 0.592 0.594 0.611

GE 0.511 0.522 0.564 0.589 0.591 0.609

1

Table 2: AUC Scores of Algorithms with Covariatesํcovarietyݱᔄྲ

Stock Code lasso ridge m1-sig-idx mm-sig-idx m1-mse-idx mm-mse-idx

AA 0.52 0.518 0.559 0.577 0.621 0.693*

C 0.518 0.517 0.554 0.599 0.611 0.682*

DIS 0.515 0.52 0.549 0.602 0.596 0.668*

IBM 0.521 0.518 0.559 0.611 0.605 0.689*

KO 0.518 0.521 0.56 0.599 0.609 0.691*

MSFT 0.511 0.517 0.562 0.611 0.611 0.688*

UTX 0.519 0.514 0.551 0.609 0.618 0.701*
CAT 0.516 0.516 0.549 0.608 0.601 0.679*

DD 0.517 0.519 0.56 0.61 0.594 0.688*

GE 0.514 0.513 0.552 0.608 0.597 0.687*

1

4 EXPERIMENTS
To evaluate the performance of our model and compare it with
other models, we use the TAQ database accessible through the
Wharton Research Data Services (WRDS) interface. We evaluate
the models over 10 large-cap US stocks as they have high liquidity.
Their stock codes are AA, C, DIS, IBM, KO, MSFT, UTX, CAT, DD
and GE, and the stocks are selected to cover all kinds of sectors
such as food, entertainment, IT, finance, manufacturing, etc. We
use the high-frequency trade data in Year 2014 and cleanse the data
as described in Section 2. To avoid being affected by the seasonal
effect, for each quarter, the first 2 months are selected into the
training set, the next 2 weeks are selected into the validation set,
and the last two weeks are selected into the test set.

After extensive experimentation, we find that the best-performing
LSTM networks are achieved by 3 stacked layers with batch normal-
ization and a sequence length of 7. The LSTM hidden state vectors
have size 64-32-16 bottom up, i.e., |h(1)i | = 64, |h(2)i | = 32, and
|h(3)i | = 16. Each LSTM network is trained with Adam [13], where
the batch size is 64, learning rate is 10−3, and the training converges
in 30 iterations. For the statistical tools in finance, we find that the

best-performing ones are ARIMA(2, 0, 2) and GARCH(1, 1) whose
results are reported in our experiments.

We evaluate the models using 2 problems: (1) predicting the price
direction of the next 5-minute block, and (2) predicting the median
share-price of the next 5-minute block.
Price Direction Prediction. This is a binary classification prob-
lem. Similar to [4], we include logistic regression (LR) as a “shallow
learing” baseline classifier which takes xt = (xt , ct ) and predicts
whether yt is 1 (rising) or 0 (dropping). Even though LR does not
consider historical prices, the technical indicators in ct are com-
puted from historical prices. We use the same two LR variants as
in [4], lasso LR (i.e., with ℓ1-regularization on weight parameters)
and ridge LR (i.e., with with ℓ2-regularization on weight parame-
ters).

Recall that we can also use regression model and then compute
the class as 1{x̂T+1 − xT > 0}. Therefore, we also use the best
statistical methods ARIMA(2, 0, 2) and GARCH(1, 1) which only
uses historical prices rather than covariates. To compute an ROC
curve, we apply a sigmoid function over (x̂T+1 − xT ) to calculate
the probability that the price rises at time (T + 1).
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Figure 5: ROC Curves of Competitive Algorithms on AA

Table 3: Root Mean Square Error (RMSE) of Price Predictionհ໒۸ݒଏଶᦧհ

Stock Code arima garch m1-mse mm-mse m1-mse-idx mm-mse-idx

AA 0.06 0.05 0.05 0.05 0.03 0.009*

C 0.06 0.06 0.07 0.05 0.04 0.01*

DIS 0.07 0.05 0.06 0.05 0.03 0.018*

IBM 0.05 0.06 0.06 0.04 0.03 0.009*

KO 0.06 0.06 0.07 0.04 0.02 0.009*

MSFT 0.05 0.04 0.05 0.05 0.03 0.011*

UTX 0.06 0.04 0.07 0.04 0.02 0.008*

CAT 0.08 0.07 0.08 0.05 0.03 0.012*

DD 0.07 0.07 0.06 0.04 0.03 0.01*

GE 0.07 0.06 0.06 0.04 0.04 0.015*

1

For LSTM models, we have 3 dimensions to specify: (1) many-
to-many (abbr. mm) or many-to-one (abbr. m1), (2) loss is sigmoid
cross-entropy (abbr. sig) or mean squared error (abbr. mse), and
(3) whether covariates are utilized (i.e., xt = (xt , ct ) or only xt )
and if so, we append the algorithm name with “idx”. We thus have
2 × 2 × 2 = 8 LSTM variants. Our model is mm-mse-idx, while
m1-sig-idx is used in prior works [4, 15].

Table 1 reports the AUC of all algorithms that take historical
prices alone as the input without using covariates ct , and Table 2
reports the AUC of all algorithms that take xt = (xt , ct ) as the
input. Key observations are as follows:

• Our LSTM model mm-mse-idx has the best performance
with AUC reaching up to 0.7, beating the second best which
is GARCH by a large margin. This shows that a combination
of many-to-many autoregressive design, MSE regression and
the use of basic features and technical indicators as covariates
together can deliver an excellent performance much better
than prior solutions.

• Even with one of the 3 designs missing, an LSTM model
cannot beat the state-of-the-art GARCH method already
widely used by finance practitioners, even though GARCH
does not look at covariates. This means that GARCH (AUC
> 0.6) actually well beats prior works. Also, ARIMA is only
slightly worse than GARCH.

• Using covariates improve the AUC of LSTM models.

To visualize the impact of each of the 3 designs in improving
LSTM performance, we plot the ROC curves of competitive algo-
rithms for the stock AA in Figure 5. The results of other stocks
are similar and omitted due to space limitation. As we can see, our
model mm-mse-idx is much better than GARCH, which is better
than m1-mse-idx, followed by mm-mse, followed by mm-sig-idx.
Thus, using binary cross-entropy loss is the biggest performance
killer, followed by not using technical indicators (and other covari-
ates), followed by not using an autoregressive architecture. This
observation is quite consistent across our 10 stocks from diversified
sectors.
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Median Share-Price Prediction. Note that we can also directly
consider price regression for predicting the median share-price in
the next 5 minutes, which is useful for intraday trading. In this case,
we compare all our 4 LSTM variants that use MSE as the regression
loss, as well as the statistical methods GARCH and ARIMA. The
RMSEs of these algorithms on our test data are reported in Table 3,
where we see that our LSTM model mm-mse-idx has an RMSE
one digit smaller than the others, which is pretty accurate. Also
m1-mse-idx has a smaller error than mm-mse, which indicates that
using covariates is more important than using a many-to-many
model, which echos our observations in Figure 5.

Finally, GARCH and ARIMA are not as competitive here, which
aligns with [6]: GARCH has the “data-stretch” problem that short-
term fluctuations of volatility tend to disappear when sampling
interval gets large. In contrast, the “leverage effect" for stocks says
that price and volatility move in opposite directions empirically, so
it is not surprising that GARCH predicts better on price movements.

5 RELATEDWORK
Autoregressive LSTM networks have been used for inventory pre-
diction by Amazon in their DeepAR model [8] where instead of
directly predicting a price yt , LSTM output predicts the parameters
of a negative binomial distribution from which yt is sampled as a
positive (inventory) count. DeepAR also proposes to let LSTM out-
put predict the parameters of a Gaussian distribution from which to
sample a continuous value for yt (e.g., a stock price), and the Gauss-
ian distribution can account for the market microstructure noises.
However, we do not adopt this model since the additional distribu-
tion layer before yt slows down training and prediction, and when
generating future price sequences for prediction, DeepAR has to
sample a price at each time step leading to nondeterministic outputs
so that many sampling passes are needed to estimate a stable pre-
diction. Our solution to market microstructure noises is to cleanse
and sparsify the high-frequency trade data using well-established
finance practices before training our LSTM network. DeepAR has
also been improved by replacing the distribution that generates yt
with spline quantile functions and trained with Continuous Ranked
Probability Score (CRPS) as the loss [9]; and by fusing state space
models (e.g., ARIMA) to enforce temporal smoothness [17].

Besides using covariates extracted from historical prices as we do,
a number of works have explored the extraction of other features
when other data sources are available. [4] also utilizes the technical
indicators of other stocks in the same sector as covariates, while
[16] constructs temporal stock correlation networks from historical
stock quantitative data, over which 5 topological mesoscale indica-
tors are computed to improve prediction. [18] further constructs
two correlation-based networks from social media and financial
data, respectively, which can be combined for prediction; while [14]
extracts mood scores about DJIA by sentiment analysis over tweets
to improve prediction. [20] extracts features from limit order books
(where more than 90% of orders end in cancellation rather than
matching) using convnets for use by LSTM. However, all these
works consider the prediction as a binary classification problem
rather than price regression.

Among other works, [12] extracts image features from candle-
stick stock charts using convnets to enhance the temporal features

learned by LSTM, while [2] decomposes the stock price time series
by wavelet transforms to eliminate noise, followed by extracting
deep high-level features using stacked autoencoders, and the fea-
tures are then fed into LSTM for price forecast. We remark that
our model is compatible with these improvements, as the extracted
features can be fed into our model as covariates.

6 CONCLUSION
This work corrects the poor use of LSTM networks in recent studies,
and provides “the” baseline LSTM network (i.e., mm-mse-idx) for
future work to compare with. Our model can be easily extended
with additional features extracted from other data sources, and
beats GARCH by a large margin.
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